Ядерные батарейки

Тепловое преобразование

Термоэмиссионное преобразование

Термоэмиссионный преобразователь состоит из горячего электрода, который испускает электроны термоэлектронным над пространственным зарядом барьером к охладителю электроду, производя полезную выходную мощность. Пары цезия используются для оптимизации рабочих функций электрода и обеспечения поступления ионов (за счет поверхностной ионизации ) для нейтрализации объемного заряда электронов .

Термоэлектрическое преобразование

Планируется, что кардиостимулятор с радиоизотопным питанием, разрабатываемый Комиссией по атомной энергии, будет стимулировать пульсирующее действие неисправного сердца. Около 1967 года.

В радиоизотопном термоэлектрическом генераторе (РИТЭГ) используются термопары . Каждая термопара состоит из двух проводов из разных металлов (или других материалов). Температурный градиент по длине каждого провода создает градиент напряжения от одного конца провода к другому; но разные материалы производят разное напряжение на градус разницы температур. Соединяя провода на одном конце, нагревая этот конец, но охлаждая другой конец, между неподключенными концами провода генерируется полезное, но небольшое (милливольты) напряжение. На практике многие из них подключаются последовательно (или параллельно), чтобы генерировать большее напряжение (или ток) от одного и того же источника тепла, поскольку тепло течет от горячих концов к холодным. Металлические термопары имеют низкую теплоэлектрическую эффективность. Однако плотность и заряд носителей можно регулировать в полупроводниковых материалах, таких как теллурид висмута и кремний-германий, для достижения гораздо более высокой эффективности преобразования.

Термофотоэлектрическое преобразование

Термофотоэлектрические (TPV) элементы работают по тем же принципам, что и фотоэлектрические элементы , за исключением того, что они преобразуют инфракрасный свет (а не видимый свет ), излучаемый горячей поверхностью, в электричество. Термоэлектрические элементы имеют КПД немного выше, чем термоэлектрические пары, и их можно накладывать на термоэлектрические пары, потенциально удваивая эффективность. Университет Хьюстон Т радиоизотопы Мощность усилий по развитию технологии преобразования направлен на объединение Термофотоэлектрических клеток одновременно с термопарами , чтобы обеспечить 3- до 4-кратного повышения эффективности системы по сравнению с современными термоэлектрическими генераторами радиоизотопов.

Генераторы Стирлинга

Радиоизотопный генератор Стирлинга является двигателем Стирлинга обусловлен разницей температур , создаваемой радиоактивным изотопом. Более эффективная версия, усовершенствованный радиоизотопный генератор Стирлинга , разрабатывалась НАСА , но была отменена в 2013 году из-за крупномасштабного перерасхода средств.

Лабораторные испытания

Прототипы бета-гальванических батарей, разработанные в Nano Diamond Battery, были протестированы в двух лабораториях – Кавендишской лаборатории Кембриджского университета и Ливерморской национальной лаборатории им Э. Лоуренса. Результаты испытаний показали, что творение ученых компании обходили другие элементы питания на основе синтетических алмазов – если те демонстрировали 15-процентный прирост эффективности в сравнении с традиционными батареями, включая литий-ионные, то в случае разработки Nano Diamond Battery этот показатель был 40-процентным.

Форму батарее Nano Diamond Battery можно придать любую

В то же время разработчики пока не могут точно сказать, когда элементы питания, основанные на разработанной ими технологии, начнут использоваться повсеместно. Первые версии таких элементов питания, пригодные для повседневного использования, могут появиться в течение двух лет.

Data Fusion Awards: синергия разнородных данных становится неотъемлемой частью бизнеса, науки и государства
Цифровизация

По их заявлению, использование таких батарей, к примеру, электромобилях намного более эффективно в сравнении с литиевыми. При тех же габаритах они смогут нести в себе большее количество энергии, а использование дешевого искусственного алмаза вместо дорогого лития позволит снизить итоговую стоимость электрокаров.

Современные технологии

Все дети мечтали поиграть в игры, где управлять действиями главного героя можно было путем поворота экрана. Этим сегодня уже трудно удивить. Даже первоклашки используют iPhone и не чувствуют от этого особого восторга. Они уже не смогут понять, что раньше существовали телефоны, функционирующие на основе кнопочного управления, а что еще ужаснее, на телефонах того времени было всего 2-3 примитивных игры. Тогда для детей даже змейка на монохромном дисплее была поводом для безмерного счастья. Играть в нее могли круглыми сутками. Игры в то время были не такими качественными. Использовать такие телефоны можно было в течение нескольких дней, не применяя при этом зарядку.

Принцип действия аккумулятора

Не только специалисты бьются над проблемой создания атомной батарейки. Недавно молодой ученый из Томска создал прототип аккумулятора, функционирующего на основе ядерной реакции. Как же работает такая атомная батарейка? Принцип работы данной разработки заключается в использовании изотопа трития. При правильном применении можно направить энергию, получаемую во время полураспада этого элемента, в верное русло. Атомная батарейка на базе трития будет работать в правильном режиме в течение 12 лет. Причем за этот промежуток времени аккумулятор не нужно будет подзаряжать. Стоит также отметить, что энергия высвобождается небольшими порциями.

Альтернативная энергетика

Солнечная энергия

В мае 2012 года международная группа ученых разработала новые ультратонкие металлические электроды на золоте, которые позволят создавать прозрачные солнечные панели. Эти панели можно будет устанавливать в окнах домов и офисов. Они будут аккумулировать энергию солнечного света в течение дня.

А в 2020 году Tesla презентовала собственный инвертор солнечной энергии, который дополнит линейку домашних солнечных батарей компании. Он будет преобразовывать солнечную энергию в энергию постоянного тока, а затем — в энергию переменного тока для бытового потребления. Устройство сможет работать при температурах от минус 30 °C до 45 °C. В зависимости от числа трекеров точки максимальной мощности, оно сможет выдавать от 3,8 кВт до 7,6 кВт мощности.

Популярные статьи  Что оригинальное подарить электрику?

Инвертор Tesla

(Фото: electrek.co)

Геотермальная энергия

Американский стартап UC Won в 2020 году предложил концепцию геотермального накопителя GeoTES (Geological Thermal Energy Storage) для круглосуточного использования солнечной энергии. Система объединит солнечные тепловые коллекторы с параболическими зеркалами (фокусируют лучи в одной точке), подземное хранилище тепла в осадочных породах (образуются при низких температурах и давлении) и электрогенерирующее оборудование на пару в виде трубок и турбины. При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу. Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии.

Схема работы системы GeoTES

(Фото: renewgeo.com)

Криосистемы

Стартап из Великобритании Highview Power начал работы в Манчестере по строительству комплекса CRYOBattery мощностью 50 МВт и емкостью 250 МВт·ч. Система CRYOBattery будет захватывать воздух из атмосферы в специальную емкость и сжимать его при сверхнизких температурах (минус 196 °C), чтобы превратить в жидкость. Эту жидкость поместят в баки с теплоизоляцией и низким давлением. Нагревание вернет воздух в газообразное состояние, а газ приведет в действие турбины генераторов, которые будут вырабатывать электричество.

Схема работы CRYOBattery

В мае 2021 года международная группа ученых представила новые ультратонкие металлические электроды из золота, которые можно будет применять для разработки прозрачных солнечных панелей. Потенциально такие панели можно будет встраивать в окна домов и офисов, чтобы аккумулировать энергию.

Состав ядерной батарейки

Никель 63 добывают из алмазов. Но чтобы получить данный изотоп потребовалось создать новую технологию по нарезке прочного алмазного материала.

Вообще ядерная батарея состоит из излучателя и отделенного с помощью специальной пленки коллектора. Когда идет распад радиоактивный элемент выпускает бета излучение. В итоге происходит его положительный заряд. В это время коллектор заряжается отрицательно. После чего появляется разность потенциалов и образуется электрический ток.

По сути наш атомный элемент питания представляет из себя слоистый пирог. Промеж 200-т алмазных полупроводников стоят 200 источников энергии, выполненных из никеля 63. Высота источника энергии составляет около 4 мм. Его вес равен 250 миллиграмм. Маленький размер — это большой плюс для Российской атомной батарейки.

Ядерные батарейки

Сложно отыскать нужные габариты. Большая толщина изотопа не даст появившимся в нем электронам выйти. Маленькая толщина не выгодна, так как снижается количество бета распадов в единицу времени. То же самое и с толщиной полупроводника. Лучше всего батарейка функционирует при толщине изотопа около 2-х микрон. А алмазного полупроводника 10 микрон.

Но то что удалось достигнуть ученым на данный момент не является пределом. Выхлоп можно повысить еще минимум в три раза. А это значит, что ядерную батарейку можно сделать в 3-и раза дешевле.

Плюсы и минусы ядреной батарейки

Все существующие атомные батареи не оптимизированы. Это означает, что все они имеют избыточный объем бета-источника. Если толщина источника слишком велика, то электроны, образующиеся в ходе реакции, не смогут оторваться от него. Этот процесс ученые называют самопоглощением.

Если изготавливать батареи со слишком тонким источником, то сократится число бета-распадов за единицу времени. Такие же проблемы наблюдаются с изготовлением преобразователя.

О создании первого прототипа было объявлено в 2016 г. При его разработке удалось частично решить вышеназванные проблемы.

Но производство в промышленных масштабах пока не налажено. Появление первых атомных элементов на рынке ожидается не раньше 2020 г.

Несмотря на все усилия ученых, ядерная батарейка по-прежнему продолжает оставаться дорогим удовольствием. Поэтому их появления в домах простых потребителей в ближайшее время ожидать не стоит.

Более-менее широкое использование атомных батареек в быту отодвинуто до 2020 года

Самой дорогой частью батареи является радиоактивный изотоп. Так 1 г этого вещества стоит 0,5 млн руб. Для производства 1 батареи требуется всего 1 мг, но и он обойдется в 5000 руб. Для батареи народного потребления это достаточно дорого.

Область применения

Несомненным плюсом всех ядерных батареек является то, что они могут эффективно функционировать при больших колебаниях температур в диапазоне -100…+100°C.

Эта устойчивость позволяет расширить область их применения. В том числе и там, где даже самые лучшие батарейки не в состоянии нормально работать. Эти изделия давно ждут на Крайнем Севере и в Арктике.

В первую очередь новые элементы питания поступят в медицинские учреждения. Первые образцы будут приспособлены к работе с медицинскими кардиостимуляторами. Новые батареи станут длительным источником питания, при этом объем самого прибора совсем не изменится. Такой кардиостимулятор сможет работать длительное время и не будет требовать замены батареи.

Атомный аккумулятор NANOTRITIUM

Вторым потребителем нового источника питания станет космическая промышленность. Батареи будут обслуживать космические аппараты.

Работы над совершенствованием батарей будут продолжены. В первую очередь ученые надеются увеличить их мощность. Будет усовершенствована алмазная структура, а это значит, увеличится напряжение и, соответственно, полезная мощность.

Всего, по прогнозам разработчиков, в перспективе возможно увеличить мощность батареи в 3 раза.

Может ли использоваться атомный аккумулятор в смартфонах?

  • диагональ экрана;
  • быстродействие;
  • габариты (как правило, борьба идет за уменьшение толщины устройств);
  • длительность автономной работы устройства.

В настоящий момент вопрос о том, как может использоваться атомная энергия для создания современных смартфонов, остается актуальным. По предположениям ученых, уже в ближайшем будущем появятся устройства, которые можно будет оборудовать аккумуляторами, функционирующими по принципу реакции ядерного элемента. В этом случае телефоны будут функционировать без дополнительной зарядки до 20 лет. Такое время автономной работы не может не впечатлять.

Популярные статьи  Асинхронный генератор

Области применения

Преимущество атомной батарейки – она способна работать при больших перепадах температур. Учёные заявляют о диапазоне -100…+100°C. Свойство позволит использовать источник питания там, где неспособна работать Li-Ion, другие прогрессивные батарейки. Например, в Арктике, пустыне.

Новые элементы питания решат проблему медицины. Теперь не нужно будет доставать кардиостимулятор каждые 5 лет для замены батарейки, что снизить смертность, затраты на медицину. Уменьшенные габариты положительно скажутся на размерах, весе медицинского кардиостимулятора, возможно это позволит проводить малоинвазивные операции.

Как работают такие батареи

В основе работы бета-гальванических батарей лежит принцип преобразования альфа- и бета-излучений радиоактивного вещества в обычный электрический ток, питающий всю современную технику. Как заверил Нима Голшарифи, созданным компанией источникам энергии можно придавать практически любую форму, другими словами, их можно выпускать в виде привычных многим батареек различных форматов – АА, 18650, CR2032 и др.

Батарейка Nano Diamond Battery может работать тысячелетиями

Конструкция бета-гальванической батареи состоит в первую очередь из радиоактивного сердечника, который выступает в качестве источника изотопов. Нима Голшарифи подчеркнул, что сердечник изготавливается из небольшого количества переработанных ядерных отходов.

Для того чтобы сделать батареи безвредными для людей и окружающей среды, специалисты Nano Diamond Battery покрыли «фонящий» сердечник специальными нерадиоактивными синтетическими алмазами, выращенными в лабораторных условиях. Это очень дешевые в производстве аналоги обычных алмазов.

Изотопы радиоактивного элемента в процессе так называемого «неупругого рассеяния» взаимодействуют с алмазным покрытием, и в итоге энергия бета-излучения преобразуется в электрический ток.

Для чего нужна «вечная» батарея

Столь значительный период работы батарей разработчики объяснили тем, что используемое в качестве сердечника вещество может оставаться радиоактивным сотни и тысячи лет. Они отметили также, что такие батареи могут вырабатывать чрезмерно большое количество энергии, которую они предлагают хранить в дополнительной «буферной» емкости. В качестве такой емкости могут служить суперконденсаторы, а в России, как сообщал CNews, как раз научились изготавливать их из бесполезного сорного растения – борщевика.

Ядерная батарейка для смартфона

На 2019 год выпускают атомные источники энергии для телефонов. Выглядят они так как показано на картинке ниже.

Напоминают некую микросхему, которая вставляется в специальные разъемы в мобильнике. Такая батарея способна проработать 20 лет. Причем все это время ее не нужно заряжать. Подобное возможно за счет процесса ядерного деления. Правда многих такой источник энергии может испугать. Ведь всем известно, что радиация вредна и разрушает организм. И таскать такой телефон рядом с собой на протяжение суток мало кому понравится.

Но как утверждают ученые такая ядерная батарея полностью безопасна. Так как в качестве активного вещества задействован тритий. Его излучение, появляющееся при распаде, является без вредным. Посмотреть работу трития можно на светящихся в темноте кварцевых часах. Выдерживает батарейка мороз в минус 50 градусов. Так же стабильно функционирует при плюс 150 C 0 . При этом ни каких колебаний в ее работе отмечено не было.

Неплохо под рукой иметь такой аккумулятор хотя бы для того чтобы подзарядить телефон на обычной АКБ.

Напряжение такой батареи колеблется от 0,8 – 2,4 вольт. Так же она генерирует от 50 до 300 нано ампер. И все это происходит на протяжение 20 лет.

Емкость рассчитана следующим образом: C = 0,000001W * 50 лет * 365 дней * 24 часа / 2V = 219mA

На данный момент АКБ оценивается 1 122 доллара. Если перевести на рубли по нынешнему курсу (65,42), то это выйдет 73 400 рублей.

Как возникла идея создания батареи?

Атомная батарейка — довольно-таки современная разработка XXI века. Однозначно, данное изобретение открыло огромное количество возможностей в деятельности как наземных, так и космических областей деятельности. Но действительно ли она не приносит вреда здоровью, как об этом везде говорят?

Идея появления небольших атомных реакторов относительно недавно получила большое распространение. Ученые выдвинули предположения о том, что такая батарейка для телефона позволит избавиться от проблемы необходимости подзарядки. О первом прототипе батарейки, использующей в своей работе атомную энергию, заговорили на отечественном предприятии «Росатом». Никакой определенной конкретики не было. Как говорят инженеры, первый компактный атомный реактор может быть изготовлен в 2017 году. Принцип действия такой батарейки будет состоять в использовании энергии химических реакций, происходящих при участии изотопа никеля. Если говорить более точно, речь идет о бета-излучении. Интерес представляет тот факт, что батарейка, созданная по данному принципу, будет работать в течение 50 лет. Размер такого элемента будет достаточно компактный. Чтобы иметь представление о том, какие габариты будет иметь атомный аккумулятор, достаточно представить себе, что простую батарейку уменьшили в 30 раз.

Опасность атомной батарейки

Как правило, люди с опасением относятся к ядерной энергии, особенно, когда речь идёт о бытовом использовании. Но атомная батарейка полностью безопасна. Изотоп углерод-14 не несёт опасности для окружающей среды, имеет минимальный радиоактивный фон, практически не превышающий естественный. Атомная модель не является “карманным реактором” и не подвергает опасности человечество.

Работы над совершенствованием ядерной батареи продолжаются. В первую очередь, учёные хотят увеличить мощность, совершенствуя алмазную структуру. В перспективе мощность вырастет минимум в 3 раза, что позволит говорить о начале единичного производства.

https://youtube.com/watch?v=aHbLR5KkMU0

Тем временем в России

Отечественные специалисты тоже смотрят в сторону атомных портативных элементов питания. К примеру, сотрудники НИТУ «МИСиС» в августе 2020 г. продемонстрировали собственный прототип такой батареи, конструкция которой основана на запатентованной микроканальной 3D-структуре никелевого бета-гальванического элемента. Срок службы такой батарейки – 20 лет.

Популярные статьи  Можно ли расположить два тороидальных трансформатора на 220 в 400 вт пирамидой?

Особенность трехмерной структуры батарейки заключается в том, что радиоактивный элемент наносится с двух сторон так называемого планарного p-n перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадет» мощность батареи. Особая микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока.

Отечественный вариант бета-гальванической батареи

За счет оригинальной 3D-структуры бета-гальванического элемента размеры батареи, по словам разработчиков, уменьшились втрое, удельная мощность повысилась в 10 раз, а себестоимость снизилась на 50%.

Модуль «Управление уязвимостями» на платформе Security Vision: как выявить и устранить уязвимости в своей ИТ-инфраструктуре
Безопасность

«Выходные электрические параметры предложенной конструкции составили: ток короткого замыкания IКЗ — 230 нА/см2 (в обычной планарной — 24 нА), итоговая мощность — 31 нВт/см2, (в планарной — 3 нВт). Конструкция позволяет на порядок повысить эффективность преобразования энергии, выделяющейся при распаде β-источника, в электроэнергию, что в перспективе снизит себестоимость источника примерно на 50% за счет рационального расходования дорогостоящего радиоизотопа, — отметил один из разработчиков Сергей Леготин, доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ «МИСиС».

Батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных (или совсем не доступных) местах: в космосе, под водой, в высокогорных районах.

Принцип работы атомной батарейки

Работы над подобным источником питания ведутся давно. Перспективы у такой разработки большие. Человечество получит небольшой по размерам источник питания с длительным сроком службы.

Такие работы ведутся не только в России, но и за рубежом. Уже получены первые рабочие образцы как в нашей стране, так и других. В качестве источников, помимо углерода-14, взяты Ni-63 и тритий.

Для основы этой ядерной батарейки выбран углерод-14. Этот элемент имеет преимущество перед другими изотопами, которые можно было бы использовать в атомных батарейках. Несомненными плюсами этого изотопа являются:

  • экологичность;
  • дешевизна;
  • длительный период эксплуатации.

Период полураспада этого вещества — 5700 лет и, самое главное, он нетоксичен. Для атомных батарей предлагают использовать Ni-63, который является для человека токсичным.

Российская атомная батарейка 2V на никеле-63 с периодом полураспада 100 лет

Атомная батарейка, принцип работы которой построен на преобразовании энергии из атомной в электрическую, уже не является фантастикой. Источником в ней служит радиоактивный изотоп.

Ни один аккумулятор не сравнится с ней по эффективности.

Схема строения атомной батарейки:

  1. Источник излучения. Самая простая батарейка состоит из источника, излучающего энергию. В ходе преобразований такая энергия переходит в электрическую. Еще одним компонентом батареи является коллектор, отделенный от источника диэлектрической пленкой. Принцип ее работы в том, что при распаде источник радиоактивного излучения испускает бета-лучи, которые выступают в виде положительной части батареи. А коллектор — это отрицательная часть батареи. Между ними возникает разность зарядов.
  2. Подложка. Еще одной частью батареи является «подложка». В этом качестве используется пористая карбидокремниевая гетероструктура. Это новый материал. Изготовляется эта часть путем наращивания на кремневое основание карбидной пленки. Такая подложка удешевляет стоимость батарейки. Структура продемонстрировала высокую устойчивость к радиации.
  3. Карбид кремния — это полупроводник. Он изначально способен выдерживать высокие температуры вплоть до +350°C. Он в 10 раз превосходит кремний в противостоянии радиации.

Устройство и состав

Атомная батарейка – технически сложный девайс, состоящий из нескольких элементов:

Устройство ядерной батарейки.

  • Источник излучения. Радиоактивный элемент, участвующий в химической реакции. В результате процесса происходит преобразование в электрический ток. Ещё один компонент, нераздельно связанный с источником – коллектор, отделённый диэлектрической плёнкой.
  • Подложка. В опытных образцах используется материал нового поколения, обладающий уникальными свойствами. Это пористая карбидокремниевая гетероструктура, которая получается в результате наращивания карбидной плёнки на кремниевой базе. Материал показал высокую устойчивость к радиоактивным элементом, при этом имеет адекватную стоимость.
  • Карбид кремния. Полупроводник, способный выдержать сверхтемпературы вплоть до +350°C. По способности противостоять радиации, он в 10 раз превосходит кремний.

Микро-батареи

Инженеры- ядерщики из Университета Висконсина в Мэдисоне исследовали возможности производства крохотных батарей, в которых для производства электроэнергии используются радиоактивные ядра таких веществ, как полоний или кюрий. В качестве примера интегрированного приложения с автономным питанием исследователи создали колеблющуюся консольную балку, которая способна совершать последовательные периодические колебания в течение очень длительных периодов времени без необходимости дозаправки. Текущие работы демонстрируют, что этот кантилевер способен передавать радиочастоты, позволяя устройствам MEMS обмениваться данными друг с другом по беспроводной сети.

Эти микробатареи очень легкие и вырабатывают достаточно энергии для работы в качестве источника питания для использования в устройствах MEMS, а также в качестве источника питания для наноустройств.

Выделяемая энергия излучения преобразуется в электрическую энергию, которая ограничена областью устройства, в которой находится процессор и микробатарея, которая снабжает его энергией.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: