Бесконтактные датчики положения механизмов

Магниточувствительные датчики

Эти выключатели применяются для осуществления контроля положения. Датчики срабатывают при приближении магнита, который расположен на движущейся части механизма. Такие устройства обладают расширенным температурным диапазоном (от -60 до +125 градусов по Цельсию). Подобная функциональность позволяет автоматизировать большое количество сложных производственных процессов.

Бесконтактные датчики положения механизмов

Бесконтактный датчик температуры магниточувствительного типа применяют:

— на химических и металлургических производствах;

— в районах Крайнего Севера;

— на подвижном составе;

— в холодильных установках;

— на автокранах;

— в бульдозерах;

— в снегоуборочных машинах и т. д.

Свое применение они находят в охранных системах зданий, а также для автоматического открывания окон и входных дверей.

Самыми современными и быстродействующими являются магниточувствительные датчики, работающие на эффекте Холла. Они не подвержены механическому износу, так как обладают электронным выходным ключом. Ресурс таких датчиков практически неограничен. В связи с этим их применение является выгодным и практичным решением задач по измерению числа оборотов вала, фиксации расположения быстро движущихся объектов и т. д.

При измерении уровня жидкостей широко применяют поплавковые магниточувствительные датчики. Они являются оптимальным вариантом для определения необходимых показателей из-за недорогой цены и простоты конструкции.

Классификация и общая схема выбора датчиков положения

Бесконтактные датчики положения (часто их называют просто датчики положения или бесконтактные выключатели) пришли на смену традиционным концевым выключателям более 20 лет назад, и теперь они широко применяются во всех отраслях промышленности для определения положения механизмов, счета и позиционирования продукции.

Датчики положения являются первичными источниками информации для систем автоматики, как на основе релейных или логических схем, так и на базе программируемых контроллеров. Надежность всей системы определяется надежностью элемента, наиболее подверженного воздействию дестабилизирующих факторов.

Именно бесконтактные датчики положения часто располагаются в зоне воздействия вибрации, пыли, воды, агрессивных жидкостей, предельных температур, электромагнитных помех, и надежность их работы определяет надежность работы всей системы управления.

Технические характеристики бесконтактных выключателей нормируются действующими стандартами, в частности ГОСТ Р 50030.5.2 99, соответствующим стандарту МЭК IEC 60947-5 2.

Предприятие «Сенсор» с помощью сертифицированной системы управления качеством обеспечивает выполнение требований ГОСТа, а значит и МЭК, что позволяет производить успешную замену дорогостоящих импортных датчиков положения на датчики «Сенсор».

Бесконтактные датчики положения классифицируются по следующим основным параметрам:

  1. Принцип действия чувствительного элемента — индуктивный, оптический, емкостный и др.
  2. Вид корпуса — цилиндрический, фланцевый, щелевой и др.
  3. Расстояние срабатывания датчика и соответствующие ему размеры корпуса.
  4. Индуктивные датчики различаются по условиям установки в конструкцию — утапливаемого и неутапливаемого исполнения, последним необходимо наличие вокруг чувствительного элемента датчика зоны, свободной от металла.
  5. Напряжение питания и схема подключения — 220 В АС, 12-24 В DC; двух- и трехпроводные схемы подключения.
  6. Функция коммутационного элемента — «НО», «НЗ», функция «ИЛИ», программируемая функция.
  7. Способ подключения (электрический монтаж) — встроенный кабель, встроенная клеммная коробка, разъем.
  8. Вид защиты выходного каскада от аварийных режимов (перегрузок по току, перенапряжений, ошибки полярности).
  9. Модификация, определяющая изменение отдельных серийных параметров или возможность применения датчика в конкретных условиях эксплуатации. Нормальные условия эксплуатации серийных индуктивных датчиков «Сенсор»: IP67; –45…+80 °С; вибростойкость 8 g при 10–100 Гц; ЭМС по ГОСТ Р 51317.

Параметры пунктов 1–4 и 9 определяют конструктивное исполнение датчика и его конструктивную совместимость с оборудованием и условиями эксплуатации. Остальные параметры определяют совместимость датчика со схемой электроавтоматики.

Более подробно классификация и значения параметров отражены в каталоге «Сенсор» или на сайте предприятия: www.sensor-com.ru.

Выбор по виду чувствительного элемента производится в первую очередь, как при разработке, так и при замене датчика.

При разработке нового оборудования приведенный в классификации порядок следования параметров, как правило, соответствует порядку пошагового выбора параметров требуемого датчика.

При замене вышедшего из строя датчика электрическую схему оборудования изменить невозможно или нецелесообразно, и приоритетно рассматривается ряд датчиков с соответствующим напряжением питания и схемой подключения (п. 5).

Далее приводятся рекомендации по выбору индуктивных датчиков. Рекомендации по выбору и применению других датчиков положения будут приведены в последующих публикациях.

Микроволновые датчики

Подобная разновидность бесконтактных выключателей является наиболее универсальным вариантом конструкции, чего позволяет добиться непрерывное сканирование обслуживаемой зоны. При этом стоит иметь в виду, что они находятся в более высокой ценовой категории, чем, например, ультразвуковые аналоги.

Функционирование подобного прибора происходит благодаря излучению электромагнитных волн, имеющих высокую частоту, значение которой несколько отличается в устройствах различных производителей. Микроволновые датчики настроены на сканирование и приемку отраженных волн. Это позволяет аппарату фиксировать даже самые малейшие изменения электромагнитного фона. Если это происходит, то сразу же срабатывает система оповещения, подключенная к датчику, в виде сигнализации, освещения и т. д.

Микроволновые приборы обладают повышенной точностью срабатывания и чувствительностью. Для них не являются преградами кирпичные стены, двери и предметы мебели. Данный факт следует учесть при установке системы. Уровень чувствительности прибора может быть изменен с помощью настройки датчика движения.

Применяют микроволновые выключатели для управления внутренним и наружным освещением, устройствами сигнализации, электроприборами и т. д.

Сенсорные выключатели

Развивающиеся технологии затронули практически все сферы жизнедеятельности человека. Не обошли они стороной и вопросы обустройства дома. Одним из ярких примеров тому является сенсорный выключатель. Это устройство позволяет управлять освещением помещения с помощью легкого прикосновения.

Бесконтактные датчики положения механизмов

Сенсорный выключатель сразу же срабатывает даже при самом слабом прикосновении к кнопке. В его конструкцию входит три основных элемента. Среди них:

  1. Блок управления, обрабатывающий поступивший сигнал и передающий его нужным элементам.
  2. Устройство коммутации. Эта деталь смыкает и размыкает цепь, а также изменяет силу тока, потребляемую светильником.
  3. Управляющая (сенсорная) панель. С помощью этой детали выключатель воспринимает сигналы с пульта ДУ или от касания. Самые современные устройства срабатывают при проведении рядом с ними рукой.

Стандартные модели могут:

— включать и выключать свет;

— регулировать яркость;

— контролировать работу отопительных приборов, сообщая об изменениях температуры;

— открывать и закрывать жалюзи;

— включать и выключать бытовые устройства.

Сенсорные выключатели производят различных видов. Конкретная модель выбирается в зависимости от потребностей офиса или жилого дома. Например, желание приобрести и установить сенсорное устройство может возникнуть из-за расположения стационарного выключателя в неудобном месте с невозможностью его переноса. А может, в доме или в квартире живет человек, подвижность которого ограничена. Порой стационарные выключатели находятся на такой высоте, что недоступны для детей. Решение проблемы потребует выбора определенной модели. Некоторые хозяева предпочитают устанавливать сенсорные выключатели для изменения яркости света не вставая с кровати и т. д.

Преимущества и недостатки

Индукционные датчики имеют свои достоинства и недостатки, как и любое другое устройство. Главным преимуществом считается простота конструкции, не требующая сложной настройки и не нуждающаяся в особых условиях для монтирования. Приспособление не имеет скользящих контактов, сделано из прочного материала и может на протяжении длительного времени работать без перерыва.

Стоит также отметить, что прибор очень редко выходит из строя, и ремонт его не представляет сложности. Именно поэтому его часто устанавливают на предприятиях, где необходим почти круглосуточный контроль за производственным процессом. Бесконтактное подключение позволяет без проблем осуществлять соединение с промышленной системой напряжения.

Важным преимуществом считается высокая чувствительность, позволяющая устанавливать датчики на производстве, где работают с металлическими предметами из разных сплавов.

Несмотря на все достоинства приспособления, существуют и некоторые недостатки. Наиболее важным считаются погрешности, которые прибор выдает в работе. Нелинейный тип погрешности проявляется вследствие того, что прибор имеет свой показатель индуктивной величины, который может отличаться от значения тех предметов, на которые он реагирует. Именно поэтому датчик может реагировать на металл некорректно и подавать неверные сигналы.

Часто встречается температурная погрешность, связанная со значительным понижением или повышением температуры в производственном помещении. Инструкция к прибору предполагает его правильное функционирование при показателе +25 градусов. При отклонении значения в ту или иную сторону нарушается работа приспособления.

Одной из случайных погрешностей считается изменение показаний датчика вследствие воздействия на него электромагнитного поля других приборов. Для того чтобы избежать подобных ситуаций, на всех производствах установлен стандарт частоты электроустановок, составляющий 50 Гц. В этом случае риск возникновения погрешности из-за постороннего электромагнитного излучения снижается к минимуму. Исключить любые нарушения в работе устройства можно путем предварительной проработки деталей.

Принцип действия бесконтактных датчиков

Принцип действия бесконтактных выключателей (датчиков) основан на изменении амплитуды колебаний генератора при внесении в чувствительную зону датчика конкретного материала определенных размеров. Расстояние переключения устройства задается в зависимости от потребностей процесса и разновидности датчика. Бесконтактный способ распознавания объекта воздействия позволяет существенно повысить надежность работы устройства по причине отсутствия движущихся и трущихся деталей.

Перечень функциональных возможностей бесконтактных датчиков широк. Обнаружение положения объекта, подсчет, позиционирование и сортировка предметов на конвейерах, контроль перемещения и скорости, обнаружение поломок механизмов, определение угла поворота, измерение перекоса и еще много других функций заложено в понятие «датчик приближения», как еще называют бесконтактный выключатель.

Именно потому их используют в самых разных отраслях: от металлообработки до пищевого производства, как элемент автоматизации транспорта и для контроля в станкостроении, для управления водо- газо, нефтеснабжением и на морских нефтеперерабатывающих платформах. Чтобы подобрать подходящий переключатель, стоит ознакомиться с классификацией датчиков по принципу их действия.

Бесконтактные датчики положения механизмов

Индуктивные бесконтактные выключатели

Индуктивные датчики реагируют на металлические, магнитные, ферромагнитные или аморфные материалы нужных размеров. Эффект достигается за счет изменения амплитуды колебаний генератора при попадании объекта в чувствительную зону датчика.

Подберите индуктивный выключатель:

по параметрам по аналогам по отраслям по маркировке

Емкостные бесконтактные выключатели

Емкостные выключатели обнаруживают как металлические, так и диэлектрические объекты. Принцип действия выключателя основан на изменении емкости конденсатора, выполняющего роль чувствительного элемента, при внесении в чувствительную зону объектов.

Подберите емкостный выключатель:

по параметрам по аналогам по отраслям по маркировке

Оптические бесконтактные выключатели

Оптические бесконтактные датчики обнаруживают контролируемые объекты, отражающие или прерывающие оптическое излучение. Коммутационный элемент у оптических бесконтактных датчиков полупроводниковый или релейный. Дальность действия этих датчиков может достигать значения 150 метров.

Подберите оптический выключатель:

по параметрам по аналогам по отраслям по маркировке

Магниточувствительные бесконтактные выключатели

Магниточувствительные датчики служат для обнаружения в пространстве намагниченного объекта. Срабатывание датчика происходит при изменении напряженности магнитного поля, вызванного, например, перемещением постоянного магнита, расположенного на подвижной части механизма.

Подберите магниточувствительный выключатель:

по параметрам по аналогам по отраслям по маркировке

Бесконтактные датчики могут быть исполнены в особо прочных корпусах из специальных материалов, согласно стандарту NAMUR, а также с приемкой 5.

Достоинства бесконтактных датчиков (выключателей):

  • частота срабатывания: до 3 кГц, на эффекте Холла до 15 кГц;
  • высокая надежность;
  • однозначная зависимость выходной величины от входной;
  • стабильность характеристик во времени;
  • небольшие размеры и масса;
  • отсутствие обратного воздействия на объект;
  • повышенная герметичность IP 68
  • различные варианты монтажа
  • работа при различных условиях эксплуатации: в общепромышленных условиях
  • в широких температурных диапазонах (от -60C° до +150C°)
  • при высоком давлении (до 500 Атм)
  • в агрессивных средах
  • во взрывоопасных зонах

Индуктивные датчики

Датчик индуктивного типа является параметрическим преобразователем, работа которого построена на изменениях показателей индуктивности за счет магнитного сопротивления. Индуктивный датчик широко используется в промышленной сфере с целью проведения измерений перемещения в спектре от 1 микрометра до 20 миллиметров.

Кроме того, бесконтактный датчик применяется при измерении давления, силы, уровня расхода газов и жидкостей и в других областях. В таких случаях показатель, который требуется измерить благодаря разнообразным чувствительным элементам преобразуется в изменение перемещения, после чего полученная величина направляется в индуктивный измеряющий преобразователь.

Особенности датчиков индуктивного типа

Широкое применение индуктивных датчиков обусловлено их преимуществами, а именно:

  • конструкция прочна и проста, в ней отсутствуют скользящие контакты;
  • устройство можно подключить к источникам, использующим промышленную частоту;
  • сравнительно высокие параметры выходной мощности (десятки Вт);
  • хорошие показатели чувствительности.

Однако существуют и недостатки в работе данных приборов. Эффективная работа имеет прямую зависимость от стабильности частоты питания. Помимо этого, датчики работают только с использованием переменного тока.

Конструкция индуктивного датчика предусматривает наличие таких компонентов: ярмо, обмотка якорь, удерживающие пружины. Информативные качества устройства зависят от погрешности, с которой датчик проводит измерение. Суммарную погрешность описываемого прибора составляют различные типы погрешностей.

Виды и применение индуктивных датчиков

В зависимости от схемы построения датчик индуктивный бесконтактный бывает одинарным или дифференциальным. Они отличаются количеством измерительных ветвей, в дифференциальном устройстве их две. Такой прибор оснащен парой одинаковых катушек, в которых одновременно изменяется индуктивность на одинаковую величину, но одна из величин имеет обратный знак.

Индуктивные датчики используются в автоматизации промышленного оборудования, как выключатели или ограничители. Благодаря применению данных устройств, обеспечивается эффективное обнаружение объектов, а эта функция крайне важна в работе автоматизированного производства. Индуктивный датчик срабатывает только в случае приближения изделия и не чувствителен к разнообразным помехам, поэтому часто используется на предприятиях с тяжелыми производственными условиями.

Подключение электродвигателя по схеме звезда и треугольник

Применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Клеммные колодки электродвигателей и схемы соединения обмоток:

Не вдаваясь в технические и подробные теоретические основы электротехники необходимо сказать, что электродвигатели у которого обмотками, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенные обмотками в треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

В связи с этим целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме звезда, после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме треугольник.

Схема управления:

Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

Схема управления

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая магнитный пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

   Реле промежуточное. Назначение, где применяются и как их выбирают?

Это интересно: Установка УЗО для защиты потребителей: освещаем по пунктам

Индуктивные датчики

В основе работы данного прибора лежит принцип учета изменений индуктивности основных его составляющих – катушки и сердечника. Отсюда пошло и само название такого датчика.

Изменения индукции свидетельствуют о том, что в магнитном поле катушки появился металлический предмет, который изменил его и, соответственно, всю схему подключения, основная функция в которой возложена на компаратор. При этом происходит подача сигнала на реле и отключение электрического тока.

Исходя из этого можно говорить об основном предназначении такого прибора. Его используют для измерения перемещений части оборудования, которое должно быть отключено, если превышены пределы проходимости. Сами датчики имеют границы движения, варьируемые в пределах от одного микрона до двадцати миллиметров. В связи с этим такой прибор называют еще и индуктивным выключателем положения.

Обзор бесконтактных датчиков подобного типа позволяет выделить из них несколько разновидностей. Подобная классификация основана на различном количестве проводов подключения:

  1. Двухпроводные. Такие индуктивные датчики подключают непосредственно в цепь. Это наиболее простой, но при этом достаточно капризный вариант. Он требует номинального сопротивления нагрузке. При снижении или увеличении данного показателя работа прибора становится некорректной.
  2. Трехпроводные. Подобный вид индукционного датчика является самым распространенным. В таких схемах два провода следует подключить к напряжению, а один – непосредственно к нагрузке.
  3. Четырех- и пятипроводные. В этих датчиках два провода подключают к нагрузке, а пятый используют для возможности выбора необходимого режима работы.

Виды и принцип работы датчиков ЧПУ

Ниже приведена таблица, в которой указаны виды датчиков ЧПУ, принципы их действия,  для чего он нужен на станке, а также место крепления на станке.

Датчики высоты
Датчик срабатывает при касании к его поверхности.Используется для поиска граней обрабатываемой детали.Крепится к корпусу рабочего инструмента.

Вида датчика Принцип работы Для чего используется Точка крепления на станке
Бесконтактный фото датчик Датчик состоит из двух частей, источника светового луча и фотоприемника. Он срабатывает если между частями будет находится какой – либо предмет. Используется в станках, где необходимо отслеживать перемещение деталей. Контроль наличия упаковки, уровня жидкости в емкости, наличия крышки на бутылке, наличие заготовки. Также датчик может применяться везде, где есть необходимость контролировать наличие детали. Датчик может находиться в разных частях станка. Крепиться он там где необходимо, к примеру, в области, где обработается деталь или на конвейерной линии.
Датчик определения угла поворотаБесконтактные датчики положения механизмов Датчик состоит из двух частей, из источника светового луча, фотоприемника и диска с отверстиями. Датчик срабатывает, когда луч света попадает через отверстия на диске на фотоприемник. Датчик используется для того чтобы определить угол наклона вала. Крепится датчик на вращающемся валу.
Линейный датчик Датчик состоит из двух сообщающихся частей, растровой линейки и головки. Он измеряет положение путем определения положения головки на растровой линейке. На данный момент датчик применяется в большинстве станков. И служит он для того чтобы определить положение детали или обрабатывающего элемента. Крепится данный датчик в областях станка на ходовые винты, где необходимо измерять положение детали или обрабатывающего элемента.
Концевые датчики Данный датчик срабатывает, когда какой-либо предмет касается его или поверхности. Датчик служит для того чтобы контролировать близость элемента конструкции станка. Крепится данный датчик на различные оси.
Датчики положения инструмента Датчик срабатывает при касании к его поверхности. Используется для поиска инструмента. Крепится столу станка.
Датчики высоты Датчик срабатывает при касании к его поверхности. Используется для поиска граней обрабатываемой детали. Крепится к подвижной части оси Z
Популярные статьи  В чем может быть причина запаха паленых (жженых) проводов в квартире?

Типы датчиков

Итак, что вообще такое датчик. Датчик — это устройство, которое выдает определенный сигнал при наступлении какого-либо определенного события. Иначе говоря, датчик при определенном условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал. Датчики могут называться также сенсорами или инициаторами.

Оптический датчик отслеживает перемещение деталей по конвейеру

Датчиков великое множество. Перечислю лишь те разновидности, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия — датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут «proximity sensor». Фактически это — датчик металла.

Оптические. Другие названия — фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются «датчик освещенности». Разновидность оптических датчиков — инфракрасные датчики движения, которые срабатывают на изменение температуры в зоне действия.

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Если этот датчик дискретный, то принцип работы очень прост. Давления воздуха или масла нет — датчик выдает сигнал на контроллер или рвет аварийную цепь. Может быть датчик для измерения давления с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Пример работы концевых выключателей — нижний датчик активирован

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него надавливает объект (активатор).

Итак, мы выяснили, что воздействие (активация) может быть любым, а реакции может быть две — дискретный либо аналоговый сигнал. Поэтому, все датчики можно считать одинаковыми, различия могут быть только в способе активации (принципе действия) и схеме включения.

Для примера рассмотрим индуктивный датчик, поскольку он наиболее распространен.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Потенциометр

Потенциометр – переменный резистор. Потенциометр имеет прочную металлическую или пластиковую ручку, связанную с ползунком, которая позволяет отрегулировать сопровтивление, после чего происходит деление переменного напряжения. В условных знаках и обозначениях символом потенциометра является резистор с проходящей через него стрелкой.

Бесконтактные датчики положения механизмов

Стрелка является третьим соединением и показывает, что потенциометр – это переменный резистор.

Потенциометры широко применяются в современных электронных устройствах. Когда речь идёт про автомобили, переменные резисторы можно найти в датчике положения дрюссельной заслонки и в датчике положения педали аксеператора.

Потенциометр включает электрические соединения, ось регулировки, дорожку переменного сопротивления, резистивную дорожку для переменного сопротивления подвижной контакт (скользящий элемент), ползунок, корпус, потенциометр имеет две круглые дорожки: внешнюю и внутреннюю.

Бесконтактные датчики положения механизмов

Внешняя дорожка выполнена из углеводорода, поэтому на ней возникает сопротивление. Внутренняя дорожка выполнена из высокопроводящего материала.

Бесконтактные датчики положения механизмов

В зависимости от характера измерения сопротивления выделяются линейные и логарифмические потенциометры. В логарифмических потенциометрах значения сопротивления увеличивается с помощью логарифмической функции. В начале движения ползунка сопротивление изменяется быстро, а затем замедляется.

А вы уже используете модули ELECTUDE для обучения и повышения квалификации автомобильных электриков и диагностов?

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: