Беспроводная передача электричества по теории тесла

Высокое напряжение как способ уменьшения потерь

Реальность такова, что передача электроэнергии на большие расстояния неизбежно сопровождается её потерями. Существенная часть электричества, проходя путь от генератора на электростанции до розетки бытового потребителя, превращается в тепло и расходуется на обогрев атмосферы. Однако это не снижает затрат за производство электроэнергии, поэтому конечному пользователю всё же приходится оплачивать и эти нецелевые расходы.

Уменьшить ненужные потери, соответственно, траты, позволяют следующие способы:

  • применение высокотемпературных сверхпроводников;
  • увеличение сечения кабелей и проводов ЛЭП;
  • повышение напряжения в линиях передачи.

За первым способом будущее. Однако сегодня он технически неосуществим. От второго отказались на первых парах развития электроэнергетики, ведь он экономически нецелесообразен из-за лишних расходов на утолщение проводников. Применение высокого напряжения оказалось наиболее удачным методом, поэтому он используется по всему миру уже порядка ста лет.

Беспроводная передача

Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.

Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:

  • нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
  • невозможно передать электричество на большое расстояние;
  • коэффициент полезного действия (КПД) подобного способа — всего 40 %.

На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.

Микроволны

Микроволны — специальные линии, имеющие длину в 12 сантиметров и частоту в 2,45 гигагерц, которые прозрачны для атмосферы. Вне зависимости от погоды, потеря энергии будет равна 5%. Вначале необходимо преобразование электротока в микроволны, потом их обнаруживание и возвращение в первое состояние. Первая проблема была решена благодаря постановке магнетрона, а вторая — благодаря ректенны или специальной антенны.

Микроволновая передача энергии

Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %.

Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.

Технология

Принцип индуктивной связи Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью. Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).

Беспроводная передача электричества по теории теслаИзображение из патента Теслы на «устройство для передачи электрической энергии», 1907 год

Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф, расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)
Технология Переносчик электрической энергии Что позволяет передавать электрическую энергию
Индуктивная связь Магнитные поля Витки провода
Резонансная индуктивная связь Магнитные поля Колебательные контуры
Емкостная связь Электрические поля Пары проводящих пластин
Магнитодинамическая связь Магнитные поля Вращение постоянных магнитов
СВЧ излучение Волны СВЧ Фазированные ряды параболических антенн
Оптическое излучение Видимый свет / инфракрасное излучение / ультрафиолетовое излучение Лазеры, фотоэлементы
Популярные статьи  Классификация систем управления по алгоритму функционирования

Наиболее перспективные направления

Беспроводное электричество постоянно изучается многими физиками, рассматриваются наиболее перспективные направления в этой области, к которым относятся:

  1. Заряжайте мобильные устройства без подключения к кабелю;
  2. Реализация электроснабжения беспилотных летательных аппаратов — направление, которое будет пользоваться большим спросом как в гражданской, так и в военной отраслях, поскольку такие устройства в последнее время используются для различных целей.

Та же процедура удаленной передачи данных без использования проводов считалась когда-то прорывом в физических и энергетических исследованиях, сейчас никого не удивляет и стала доступна каждому. Благодаря современному развитию технологий и разработок, транспортировка электроэнергии этим методом становится реальностью и может быть реализована.

Ожидание относительно короткое. Если японцы сдержат свои обещания, в 2020 году вся бытовая техника, компьютеры и портативные устройства смогут освободиться от ига проводов, поработивших человечество. Покупателю останется только принести домой, например, новый телевизор, повесить его на стену и начать смотреть фильм буквально сразу, не задумываясь над тем, на каком экране скрыть некрасивый черный шнур питания. На улицах, в квартирах, в кафе будут встроены беспроводные передатчики энергии, что позволит людям забыть о разряженных батареях. Конечно, на окончательное воплощение таких идей в жизнь уйдет целых десять лет, но у нас есть все шансы на светлое будущее. К тому же уже есть вполне функциональные технологии. Жалко, что Никола Тесла не увидит этот день…

Повышение КПД с помощью принципа резонанса

Резонанс-это свойство, которое существует во многих различных физических системах. Свойство можно рассматривать как собственную частоту, на которой энергия может быть наиболее эффективно добавлена к колебательной системе.

Качели на детской площадке — это пример колебательной системы, включающей потенциальную и кинетическую энергию. Ребенок раскачивается взад и вперед со скоростью, которая определяется длиной качания. Ребенок может заставить качели подняться выше, если он правильно координирует свои движения рук и ног с движением качелей. Качели колеблются на своей резонансной частоте, и простые движения ребенка эффективно передают энергию в систему.

Другой пример резонанса — способ, которым певец может разбить бокал вина, пропев одну громкую, ясную ноту. В этом примере бокал вина является резонансной колебательной системой. Звуковые волны, проходящие по воздуху, улавливаются стеклом, а звуковая энергия преобразуется в механические колебания самого стекла. Когда певец попадает на ноту, соответствующую резонансной частоте стекла, стекло поглощает энергию, начинает вибрировать и в конечном итоге может даже разбиться. Резонансная частота бокала зависит от его размера, формы, толщины и количества вина в нем.

Резонансная магнитная связь возникает, когда два объекта обмениваются энергией через свои изменяющиеся осциллирующие магнитные поля. Резонансная связь возникает, когда собственные частоты двух объектов приблизительно одинаковы.

Технология применяющая  принцип беспроводной передачи электричества — это специально разработанные магнитные резонаторы, которые эффективно передают энергию на расстояние через магнитное ближнее поле.

Эти конструкции источников и устройств, а также электронные системы, управляющие ими, поддерживают эффективную передачу энергии на расстояния, во много раз превышающие размеры самих источников/устройств.

Два резонансных объекта с одинаковой резонансной частотой имеют тенденцию эффективно обмениваться энергией, слабо взаимодействуя с посторонними нерезонансными объектами.

Магнитное ближнее поле обладает рядом свойств, которые делают его отличным средством передачи энергии в типичной потребительской, коммерческой или промышленной среде. Наиболее распространенные строительные и мебельные материалы, такие как дерево, гипсокартон, пластик, текстиль, стекло, кирпич и бетон, по существу, «прозрачны» для магнитных полей, что позволяет технологии эффективно передавать энергию через них.

Кроме того, магнитное ближнее поле обладает способностью огибать многие металлические препятствия, которые в противном случае могли бы блокировать магнитные поля.

Таким образом, основной принцип беспроводной передачи электричества с наибольшей эффективностью основан на магнитном резонансе.

Властелин молний, черный маг, повелитель электричества

Мифическая слава Теслы происходит из двух источников. Во-первых, шло грандиозное бизнес-сражение компаний Эдисона (различные устройства на постоянном токе) и Вестингауза (переменный ток). Можно сказать, что на рубеже XIX–XX веков зарождался современный капиталистический рынок, причем именно в США. В ход шли все методы борьбы за экономическое выживание — вплоть до физических фокусов и представлений перед публикой и громких газетных заголовков.

Тесла, судя по всему, был человеком очень мечтательным, с необъятной интуицией и богатой фантазией. Настолько богатой, что, читая отрывки из его многочисленных пресс-конференций и интервью, которые он давал для привлечения новых потоков финансов, можно вообразить Теслу эдаким полумифическим персонажем и техномагом. Однако отличительная черта почти всех его выступлений на публике — недосказанность.

Фото: Mary Evans Picture Library/Mary Evans Picture Library/East News

Например, в 1899–1900 годах проводилась исследовательская экспедиция в Колорадо-Спрингс — этот регион славился постоянными и частыми грозами. Тесла со своей командой инженеров исследовал молнии и строил первые экспериментальные установки громадных размеров для получения мощных электрических разрядов, имитирующих молнии (искровой разряд в атмосфере). Именно тогда начала складываться репутация Теслы среди далекого от науки населения США как о «властелине молний», «черном маге электричества» и т. п. Разработав конструкцию большого высокочастотного излучателя, Тесла действительно смог получать напряжения от 12 до 20 млн вольт (по данным разных источников) и токи в тысячи ампер. Это действительно было конструкторским, инженерным достижением. Попутно Тесла подтвердил перспективное применение нескольких замечательных свойств сильных электростатических полей: осаждение тумана, очистка поверхностей от ржавчины, грязи, краски. То есть миллионвольтовые схемы, разработанные Теслой, действительно открывали новые пути исследования микроволновых (высокочастотных) токов.

Однако по приезде из Колорадо в Нью-Йорк была задумана обширная статья для журнала Century, посвященная результатам колорадских экспериментов. Как часто всплывает при изучении биографии Теслы и его трудов, со статьей возникли проблемы. Она больше напоминала философский трактат или научно-фантастический роман, нежели научное сообщение о новых результатах. А надо сказать, многие фантасты начала XX века в своих романах предсказывали будущие технологии.

Второй причиной славы и популярности Теслы является фундаментальное общественное явление. В период между мировыми войнами США уже стали самой сильной мировой державой. Но все относились к американцам как ко вчерашней колонии. Это порождало сильнейший комплекс неполноценности. Особенно худо было с наукой. В Европе наука развивалась многие столетия, даже тысячелетия. По части инженерной работы американцы делали просто чудеса в плодотворных условиях стремительно развивающегося рынка, а вот для научных успехов требовалось зарождение собственной научной школы, традиций и опыта. На все это требовалось значительное время, поэтому политические деятели и стратеги стремились заполучить ученых других стран. Для этого нужен был авторитет, который и пытались заполучить как можно скорее — для этого чрезмерно пиарились достижения (часто необъективные) собственных ученых и инженеров. Не случайно многие историки физики отмечают многочисленные попытки выдвижения Теслы и Эдисона в нобелевские лауреаты, а также серьезное давление на факт признания Плутона планетой, ведь открытие было сделано американским астрономом Персивалем Лоуэллом.

Популярные статьи  Составление управляющей программы программируемого контроллера

Основные способы беспроводной передачи энергии

Беспроводная передача электричества в больших масштабах сейчас кажется чем-то недостижимым. Но, возможно, спустя всего несколько лет эта технология станет реальностью, как в свое время мобильные телефоны и компьютеры.

Сейчас уже известно о шести способах передачи электричества беспроводным методом. Рассмотрим все их.

  1. Электромагнитная индукция. Энергию можно подавать через магнитное поле, но только на небольшие расстояния.
  2. Ультразвук. Здесь применяются ультразвуковые волны, при помощи которых можно передавать электроэнергию на расстояние до 10 метров.
  3. Микроволновое излучение. При этом способе передачи энергии используются микроволны. Потери составляют всего лишь 5%. Но этот способ очень опасный для здоровья людей.
  4. Электростатическая индукция. Именно такой метод беспроводной передачи электричества на расстоянии был изобретен Николой Теслой. На данном этапе это самый эффективный и перспективный способ передачи энергии, так как речь идет о дальних расстояниях.
  5. Лазер. Здесь передача электричества осуществляется через лазерный луч.
  6. Технология электропроводности. Электричество передается через землю.

Все эти методы позволяют передавать электроэнергию на небольшие расстояния. Но есть и еще одна существенная проблема – все существующие сейчас приемники излучения обладают крайне низким КПД. То есть возможности передачи энергии по воздуху весьма ограничены.

В наши дни

Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.

Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:

На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.

Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.

Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.

В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.

Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.

В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.

Похожие материалы:

Основы беспроводной зарядки

Беспроводная передача электрической энергии (WPT) дает нам шанс избавиться от тирании кабелей питания. В настоящее время эта технология проникает во все виды устройств и систем. Давайте взглянем на нее!

Питание электрокара беспроводным способом

Передача электроэнергии на расстояние

Многие производители автомобилей, работающих на электрическом токе, проводят разработки альтернативной подзарядки авто без его подключения к сети. Больших успехов в этой области добилась технология зарядки транспорта от специального дорожного полотна, когда машина принимала энергию от покрытия, заряженного магнитным полем или СВЧ волнами. Но подобная подпитка была возможна только при условии, когда расстояние между дорогой и приемным устройством было не более 15 сантиметров, что в современных условиях не всегда исполнимо.

Зарядка автомобиля

Данная система находится на стадии разработок, поэтому можно предполагать, что подобный тип передачи питания без проводника еще получит свое развитие и, возможно, будет внедряться в современную транспортную индустрию.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Популярные статьи  Как подключить сушилку для рук напрямую, в обход электроники?

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Теоретическая часть

Само собой, беспроводная передача электричества подразумевает в себе передачу электроэнергии без каких-либо проводов. Некоторые люди, которым тяжело представить этот процесс, зачастую сравнивают беспроводную передачу электричества с передачей информации. Так, WiFi, сотовая связь или Bluetooth — это первое, что приходит в голову. Вот только это не одно и тоже, ведь между процессом передачи электроэнергии и передачей информации по воздуху есть существенное отличие. Оно заключается в том, что радио передачи по сути своей являются беспроводным мостом для самой информации, а вот энергию передавать они не могут.

Передача электроэнергии без проводов является относительно новой отраслью науки, тем не менее, быстро развивающейся. Во многих лабораториях поклонники науки размышляют над вопросами, ответы на которые помогут людям передавать энергию по воздуху абсолютно безопасно и без перебоев.

Как работает система беспроводной передачи электричества

В основе принципа работы беспроводной передачи электроэнергии лежит магнетизм и электромагнетизм. Беспроводная зарядка, ровно также, как и индуктивная зарядка основаны на принципах работы, которые подразумевает наличие двух катушек в механизме – передатчика и приемника, которые в последующем генерируют магнитное поле непостоянного тока, которое является переменным. Благодаря этому полю, в катушке приемника возникает напряжение. Вот именно по такому принципу и работают существующие на сегодняшний день беспроводные зарядки для смартфонов. И именно поэтому не каждый смартфон можно заряжать без проводов, ведь необходимая катушка установлена только в самых новых премиальных моделях.

Если объяснять это все по-простому, то секрет данного механизма достаточно прост. Существует два устройства, которые при комбинации создают электрическое поле, влияющее на одно из устройств. Вследствие этого и происходит передача тока без проводов.

Особенность передачи энергии

На самом деле начало разработки принципа беспроводной передачи электричества восходит к 19 веку, когда Никола Тесла использовал проводящие системы создав  магнитное поле для передачи энергии по воздуху. Поскольку он система находилась не в режиме, большая часть энергии была потрачена впустую и имела маленький КПД.

Все мы знаем об использовании электромагнитных излучений (радиоволн), которые достаточно хорошо известны для беспроводной передачи информации. Кроме того, лазеры также использовались для передачи энергии без проводов. Однако радиоволны не подходят для передачи энергии, потому что природа излучения такова, что радиоволны распространяются по всему пространству, в результате чего большое количество излучений тратится впустую. А в случае лазеров необходима непрерывная линия визирования (препятствие мешает процессу передачи).

Более практичной технологией принципа беспроводной передачи электричества считается применение электромагнетизма.

Электромагнетизм-термин, обозначающий взаимозависимость изменяющихся во времени электрических и магнитных полей. Например, оказывается, что и колеблющееся магнитное поле производит магнитное электрическое поле – эффект магнитной индукции.

Магнитная индукция: если петля или катушка из проводящего материала будет нести переменный ток, то это является эффективной структурой для генерации или «захвата» магнитного поля.

Если контур подключить к источнику питания переменного тока, он будет создавать колебательное магнитное поле возле контура. Вторая петля, расположенная вплотную к первой, может «захватить» некоторую часть этого колеблющегося магнитного поля.  Магнитное поле будет генерировать электрический ток во второй катушке. Ток, генерируемый во второй катушке, может  использоваться для питания различных устройств.

Этот тип передачи электрической энергии от одной петли или катушки к другой хорошо известен и называется магнитная индукция. Наиболее распространенными примерами устройств, основанных на магнитной индукции, являются электрические трансформаторы и электрогенераторы.

Энергетическая связь принципа: энергетическая связь возникает, когда источник энергии имеет средство передачи энергии другому объекту. Одним из простых примеров является локомотив, тянущий вагон поезда-механическая связь между ними позволяет локомотиву тянуть поезд и преодолевать силы трения и инерции, которые удерживают поезд на месте и поезд движется. Магнитная связь возникает, когда магнитное поле одного объекта взаимодействует со вторым объектом и индуцирует электрический ток в этом объекте или на нем. Таким способом электрическая энергия может быть передана от источника питания к питаемому устройству. В  отличие от примера механической связи, приведенного для поезда, магнитная связь не требует какого-либо физического контакта между объектом, генерирующим энергию, и объектом, получающим или улавливающим эту энергию.

Электрический трансформатор-это устройство, которое использует магнитную индукцию для передачи энергии от своей первичной обмотки к своей вторичной обмотке, не соединяя обмотки друг с другом. Он используется для «преобразования» переменного тока при одном напряжении в переменный ток при другом напряжении.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: