Аналоговый сигнал – определение и особенности

Содержание

Отличия цифрового сигнала от аналогового

Для большинства людей различие между аналоговым и цифровым сигналом может быть совершенно неявным. И все же их разница значительна и заключается не просто в качестве подачи телеэфира.

Аналоговым сигналом являются полученные данные, которые мы видим, слышим и воспринимаем, как мир, который нас окружает. Этот метод генерирования, обработки, передачи и записи сигналов – традиционный и пока очень распространённый. Данные преобразовываются в электромагнитные колебания, отражающие частоту и интенсивность явлений по принципу полного соответствия.

Цифровой сигнал представляет собой совокупность координат, описывающих электромагнитную волну, которая не недоступна для восприятия напрямую, без декодирования, т.к. является последовательностью электромагнитных импульсов. Говоря о дискретности и непрерывности сигналов, подразумевают соответственно «принятие значений из конечного набора» и «принятие значений из бесконечно множества».Аналоговый сигнал – определение и особенности

Примером дискретности могут быть школьные оценки, которые принимают значения из набора 1,2,3,4,5. Фактически, цифровой видеосигнал часто создаётся путём оцифровки аналогового сигнала.

Уходя от теории, на деле можно выделить следующие ключевые отличия между аналоговыми и цифровыми сигналами:

  1. аналоговое телевидение уязвимо для помех, вносящих в него шумы, в то время как цифровой импульс либо вовсе перекрыт помехами и отсутствует, либо поступает в первоначальном виде.
  2. принять и считать аналоговый сигнал может любое устройство, работа которого базируется на том же принципе, что и вещание передатчика. Цифровая волна предназначена определённому «адресату», а стало быть, устойчива к перехвату, т.к. надёжно закодирована.

Качество изображения

Качество картинки в телевизоре, которую предоставляет аналоговое ТВ во многом обусловлено ТВ стандартом. Кадр, который несёт с собой аналоговое вещание, включает 625 строк с соотношением сторон 4×3. Таким образом, старый кинескоп демонстрирует изображение из телевизионных линий, в то время как цифровое изображение составлено из пикселей.

Аналоговый сигнал – определение и особенностиКартинка при аналоговом сигнале

При слабом приёме и помехах телевизор будет «снежить» и шипеть, недодавая зрителю изображение и звук. В попытках внести улучшения в эту ситуацию, в своё время, было реализовано кабельное ТВ.

Аналоговый сигнал – определение и особенностиКартинка при цифровом сигнале

Другие возможности

Несмотря на быстрое развитие электронных технологий и преимущества цифрового сигнала перед аналоговым, все ещё существуют области, в которых аналоговая технология незаменима, как, к примеру, профессиональная обработка звука. Но, хотя оригинальная запись может быть не хуже «цифры», после редактирования и копирования она неизбежно будет зашумлена.

Вот набор основных операций, которые можно выполнять с аналоговым потоком:

  • усиление и ослабление;
  • модуляция, направленная на снижение его восприимчивости к помехам, и демодуляция;
  • фильтрация и обработка частоты;
  • умножение, суммирование и логарифмирование;
  • обработка и изменение параметров его физических величин.

4.2. Сигналы с непрерывной амплитудной модуляцией

Рассмотрение модулированных сигналов начнем с сигналов, у которых в качестве изменяемого параметра выступает амплитуда несущего колебания. Модулированный сигнал в этом случае является амплитудно-модулированным или сигналом с амплитудной модуляцией (АМ-сигналом).

Как уже было отмечено выше, основное внимание будет уделено сигналам, несущее колебание которых представляет собой гармоническое колебание вида

,

где – амплитуда несущего колебания,

– частота несущего колебания.

Здесь и далее полагается, что начальные фазы гармонических колебаний равны нулю.

В качестве модулирующих сигналов сначала рассмотрим непрерывные сигналы . Тогда модулированные сигналы будут являться сигналами с непрерывной амплитудной модуляцией. Такой сигнал описывается выражением

, (4.2)

где – огибающая АМ-сигнала,

– коэффициент амплитудной модуляции.

Из выражения (4.2) следует, что АМ-сигнал представляет собой произведение огибающей на гармоническую функцию . Коэффициент амплитудной модуляции характеризует глубину модуляции и в общем случае описывается выражением

. (4.3)

Очевидно, при сигнал представляет собой просто несущее колебание.

Для более детального анализа характеристик АМ-сигналов рассмотрим простейший АМ-сигнал, в котором в качестве модулирующего сигнала выступает гармоническое колебание

, (4.4)

где , – соответственно амплитуда и частота модулирующего (управляющего) сигнала, причем . В этом случае сигнал описывается выражением

, (4.5)

и называется сигналом однотональной амплитудной модуляции.

На рис. 4.2 изображены модулирующий сигнал , колебание несущей частоты и сигнал .

Для такого сигнала коэффициент глубины амплитудной модуляции равен

Воспользовавшись известным тригонометрическим соотношением

после несложных преобразований получим

(4.6)

Выражение (4.6) устанавливает спектральный состав однотонального АМ-сигнала. Первое слагаемое представляет собой немодулированное колебание (несущее колебание). Второе и третье слагаемые соответствуют новым гармоническим составляющим, появившимся в результате модуляции амплитуды несущего колебания; частоты этих колебаний и называются нижней и верхней боковыми частотами, а сами составляющие – нижней и верхней боковыми составляющими.

Амплитуды этих двух колебаний одинаковы и составляют величину

, ( 4.7)

На рис. 4.3 изображен амплитудный спектр однотонального АМ-сигнала. Из этого рисунка следует, что амплитуды боковых составляющих располагаются симметрично относительно амплитуды и начальной фазы несущего колебания. Очевидно, ширина спектра однотонального АМ-сигнала равна удвоенной частоте управляющего сигнала

В общем случае, когда управляющий сигнал характеризуется произвольным спектром, сосредоточенным в полосе частот от до , спектральный характер АМ-сигнала принципиально не отличается от однотонального.

На рис. 4.4 изображены спектры управляющего сигнала и сигнала с амплитудной модуляцией. В отличие от однотонального АМ-сигнала в спектре произвольного АМ-сигнала фигурируют нижняя и верхняя боковые полосы. При этом верхняя боковая полоса является копией спектра управляющего сигнала, сдвинутой по оси частот на

величину , а нижняя боковая полоса представляет собой зекальное отображение верхней. Очевидно, ширина спектра произвольного АМ-сигнала

, (4.8)

т.е. равна удвоенной верхней граничной частоте управляющего сигнала.

Возвратимся к сигналу однотональной амплитудной модуляции и найдем его энергетические характеристики. Средняя мощность АМ-сигнала за период управляющего сигнала определяется по формуле:

. (4.9)

Так как , а , положим , где . Подставляя выражение (4.6) в (4.9), после несложных, но достаточно громоздких преобразований с учетом того, что и с использованием тригонометрических соотношений

и ,

получим

. (4.10)

Здесь первое слагаемое характеризует среднюю мощность несущего колебания, а второе – суммарную среднюю мощность боковых составляющих, т.е.

Так как суммарная средняя мощность боковых составляющих делится поровну между нижней и верхней, что вытекает из (4.7), то отсюда следует

. (4.11)

Таким образом, на передачу несущего колебания в АМ-сигнале тратится более половины мощности (с учетом того, что ), чем на передачу боковых составляющих. Так как информация заложена именно в боковых составляющих, передача составляющей несущего колебания нецелесообразна с энергетической точки зрения. Поиск более эффективных методов использования принципа амплитудной модуляции приводит к сигналам балансной и однополосной амплитудной модуляции.

Виды модуляции

Описывая виды сигналов и сигналы в целом, необходимо также поговорить и о модуляции. Что это такое? Это процесс изменения сразу нескольких параметров колебаний, которые осуществляются по определенному закону. Нужно заметить, что делится модуляция на цифровую и импульсную, а также на некоторые другие.

Популярные статьи  Как из 220 вольт сделать 380 в?

В свою очередь, многие из них делятся отдельно на несколько видов, причем их довольно много. Следует сказать об основных характеристиках такого понятия. Например, за счет видов модуляции сигнала можно добиться устойчивой передачи, минимальной потери, однако следует заметить, что для каждого из них требуется особенный усилитель линейности.

Отличие дискретного сигнала от цифрового

Про Азбуку Морзе наверное слышали все. Придумал художник Самуэль Морзе, другие новаторы усовершенствовали, а использовали все. Это способ передачи текста, где точками и тире закодированы буквы. Упрощенно, кодировка называется морзянкой. Её долго использовали на телеграфе и для передачи информации по радио. Кроме того, сигналить можно с помощью прожектора или фонарика.

Код морзянки зависит только от самого знака. А не от его продолжительности или громкости (силы). Как ни ударь ключом (моргни фонариком), воспринимаются только два варианта– точка и тире. Можно только увеличить скорость передачи. Ни громкость, ни продолжительность в расчёт ни принимаются. Главное, что бы сигнал дошёл.

Так же и цифровой сигнал

Важно закодировать данные с помощью 0 и 1. Получатель должен только разобрать, комбинацию нолей и единиц. Неважно с какой громкостью и какой продолжительностью будет каждый сигнал

Важно получить нолики и единички. Это суть цифровой технологии

Неважно с какой громкостью и какой продолжительностью будет каждый сигнал. Важно получить нолики и единички

Это суть цифровой технологии.

Дискретный сигнал получится если закодировать ещё громкость (яркость) и продолжительность каждой точки и тире, или 0 и 1. В этом случае вариантов кодировки больше, но и путаницы тоже. Громкость и продолжительность можно не разобрать. В этом и разница между цифровым и дискретным сигналами. Цифровой генерируется и воспринимается однозначно, дискретный с вариациями.

История появления термина

Появление термина, обозначающего такой способ передачи данных, тесно связано с такими сферами, как вычислительная техника, телефония и звукозаписывающая индустрия, электрические измерения.

Вычислительная техника

В 40-х годах создаются первые вычислительные системы, предназначенные для сбора и обработки цифровой информации. В начале 80-х годов с появлением новых моделей компьютеров на базе процессоров Intel возможности вычислительной техники расширились. Именно в этот период появляется данный термин.

Звукозапись и телефония

Понятие непрерывного способа передачи данных изначально связано с телефонией. Непрерывные колебания поступают на динамик устройства, становятся электрическим аналогом, затем преобразуются в сигнал, подобный голосу.

Электрические измерения

Непрерывный поток воспроизводится приемным устройством пропорционально таким электрическим параметрам, как напряжение, сила тока. Именно с началом измерения указанных выше электрических величин связывают появление этого термина.

Особенности аналогового и цифрового телевидения

Обывательское суждение о крахе эфирного ТВ и переходе на технологии вещания будущего несколько несправедливо, уже потому, что телезрители подменяют понятия: эфирное и аналоговое ТВ. Ведь под эфирным принято понимать любое телевидение, транслируемое по наземному радиоканалу.

И «аналог» и «цифра» – это разновидности эфирного ТВ. Невзирая на то, что аналоговое телевидение отличается от цифрового, их общий принцип вещания идентичен – телевизионная вышка транслирует каналы и гарантирует качественный сигнал лишь в ограниченном радиусе. При этом цифровой радиус охвата короче, чем дальность незакодированного потока, а значит, ретрансляторы должны устанавливаться ближе друг к другу.

А вот мнение о том, что «цифра» обойдёт «аналог» в конечном счёте, правдиво. Телезрители многих стран уже стали «очевидцами» преобразования аналогового сигнала в цифровой и вовсю наслаждаются просмотром телепрограмм в HD качестве.

Вас может заинтересовать: Правильная антенна для приема цифрового телевидения DVB T2 на дачу

Особенности эфирного телевидения

Аналоговый сигнал – определение и особенности
ретрансляторы цифрового телевидения

Существующая эфирная телесистема использует для передачи телевизионного продукта аналоговые сигналы. Они распространяются посредством волн с высоким уровнем колебаний, достигая наземных антенн. Для того чтобы увеличить площадь вещательного покрытия устанавливают ретрансляторы. Их функция – сконцентрировать и усилить сигнал, передавая его удалённым приёмникам. Сигналы передаются с фиксированной частотой, поэтому каждый канал соответствует своей частоте и в телевизоре закреплён в порядке нумерации.

Преимущества и недостатки цифрового телевещания

Информация, передаваемая с помощью цифрового кода, практически не содержит ошибок и искажений. Устройство, которое оцифровывает исходный сигнал, называется аналого-цифровым преобразователем (АЦП).

Для кодирования импульсов используют систему единиц и нулей. Чтобы считывать и преобразовывать двоично-десятичный код, в приёмник встроено устройство, именуемое цифро-аналоговым преобразователем» (ЦАП). Ни для АЦП, ни для ЦАП не существует половинных значений, к примеру, 1,4 или 0,8.

Этот способ зашифровки и передачи данных подарил нам новый формат ТВ, у которого есть много достоинств:

  • изменение силы или длины импульса не влияет на его распознавание декодером;
  • равномерное покрытие вещания;
  • в отличие от аналогового вещания, отражения от препятствий преобразованного эфира складываются и улучшают приём;
  • частоты вещания используются эффективнее;
  • возможен приём цифрового ТВ на аналоговом телевизоре.

Примеры передачи цифрового и аналогового сигналов

Цифровые технологии постепенно теснят аналоговые и уже широко используются во всех сферах жизни. Зачастую мы просто не замечаем этого, а цифра окружает повсюду.

Вычислительная техника

Первые аналоговые вычислительные машины созданы ещё в 30-е годы ХХ века. Это были достаточно примитивные устройства, для выполнения узкоспециализированных задач. Аналоговые компьютеры появились в 1940-е, а широкое применение получили в 1960-е годы.

Постоянно совершенствовались, но с ростом объёма обрабатываемой информации постепенно уступили место цифровым устройствам. Аналоговые компьютеры хорошо приспособлены для автоматического контроля производственных процессов, из-за моментального реагирования на изменения входящих данных. Но скорость работы невысока и объём данных ограничен. Поэтому аналоговые сигналы применяются только в некоторых локальных сетях. В основном это контроль и управление производственными процессами. Где исходной информацией служат температура, влажность, давление, скорость ветра и подобные данные.

В некоторых случаях к помощи аналоговых компьютеров прибегают при решении задач, где точность обмена данными вычислений, не важна как для цифровых электронно-вычислительных машин.

В начале 21 века аналоговый сигнал уступил цифровым технологиям. В вычислительной технике смешанные цифровые и аналоговые сигналы применяют только для обработки данных на основе некоторых микросхем.

Звукозапись и телефония

Виниловая пластинка и магнитная лента два ярких представителя аналогового сигнала для воспроизведения звука. Оба по-прежнему выпускаются и пользуются спросом некоторых ценителей. Многие музыканты считают, что только записав альбом на плёнку можно добиться сочного настоящего звучания. Меломаны любят послушать диски с характерными шумами и потрескиваниями. С 1972 года выпускались магнитофоны осуществляющие цифровую запись на магнитную ленту, но распространения не получили из-за дороговизны и больших габаритов. Применяются только в профессиональной звукозаписи.

Ещё один пример аналогового и цифрового сигналов в звукозаписи – микшеры и синтезаторы звука. В основном используются цифровые устройства, а применение аналоговых вызвано привычками и предрассудками. Считается, что цифровая запись до сих пор не добилась того эффекта всеохватывающей передачи музыки. И он присущ только аналоговому сигналу.

Чем отличается аналоговое телевидение от цифрового (видео)

Разница между цифрой и аналоговым сигналом в способе трансляции сигнала:

  • Аналоговый (ATV), континуальный – подается беспрерывно.
  • Цифровой (DVT), дискретный – подается прерывисто.
Популярные статьи  Почему не работают розетки после того, как сработал автомат?

На вопрос, ATV это цифровое или аналоговое, правильный ответ – аналоговое. Реакция на помехи у сигналов присутствует, но отличия от реакций на лицо:

  • ATV – Расстояние между приемником и передатчиком играет важную роль. Если оно увеличивается то, ухудшается качество трансляции. Погода тоже имеет сильное взаимодействие на него. Чтобы сигнал был в порядке, его нужно усиливать, а это дополнительные затраты энергии.
  • DVT – Такой код является неизменным, то есть, при внесении в него каких либо иных данных это уже будет другой код, который не воспримет приемник. Усиление импульса возможно без особых проблем, поскольку единица в коде будет все той же единицей. Никаких реакций на погодные условия у дискретного сигнала нет. Сигнал либо есть, либо его нет. Цифру нужно декодировать, и делается это с помощью специального ключа, без знания которого сигнал не распознает то устройство, которому оно не передается.

Основные отличия двух типов вещания.

Тип Цифровое Аналоговое
Устойчивость к помехам Есть защита Нет защиты
Качество звука и видео Высокое (без сторонних шумов) Низкое (присутствует рябь, шипение)
Оригинальная картинка Воссоздается Не воссоздается
Ограничения Ограничено зоной покрытия провайдера Качество и количество транслируемых данных не ограничено
Разрешение SD, HD, Full-HD SD
Тюнер Внешний или внутренний DVB-T2 Не нужен
Антенна ДМВ дециметрового диапазона МВ метрового или ДМВ дециметрового диапазона
Кол-во к-лов 20 телеканалов бесплатно через эфирное ТВ, и сколько угодно за деньги с помощью сети провайдера 1-10, зависит от местности
Цена Эфирное – без оплаты, Кабельное – платно,

Спутниковое – платно (некоторые каналы бесплатно),

IPTV – платно / без оплаты

Бесплатно

Цели обработки сигналов.

Главная цель обработки сигналов заключается в необходимости получения содержащейся в них
информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной),
в частоте или в спектральном составе, в фазе или в относительных временных зависимостях
нескольких сигналов.

Как только желаемая информация будет извлечена из сигнала, она может быть использована
различными способами. В некоторых случаях желательно переформатировать информацию, содержащуюся
в сигнале.

В частности, изменение формата сигнала происходит при передаче звукового сигнала в телефонной
системе с многоканальным доступом и частотным разделением (FDMA). В этом случае используются
аналоговые методы, чтобы разместить несколько голосовых каналов в частотном спектре для передачи
через радиорелейную станцию СВЧ диапазона, коаксиальный или оптоволоконный кабель.

В случае цифровой связи аналоговая звуковая информация сначала преобразуется в цифровую с
использованием АЦП. Цифровая информация, представляющая индивидуальные звуковые каналы,
мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по
последовательной цифровой линии связи (как в ИКМ-системе).

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без
существенной потери информации) с последующим форматированием и передачей информации на
пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В
высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции (ADPCM) широко
используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах
мобильной связи, системах записи звука MPEG, в телевидении высокой четкости (HDTV).

Промышленные системы сбора данных и системы управления используют информацию, полученную от
датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь,
непосредственно управляют процессом

Обратите внимание, что эти системы требуют наличия как АЦП и
ЦАП, так и датчиков, устройств нормализации сигнала (signal conditioners) и DSP (или микроконтроллеров)

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью
является восстановление сигнала. Такие методы, как фильтрация, автокорреляция, свертка и т.д.,
часто используются для выполнения этой задачи и в аналоговой, и в цифровой областях.

ЦЕЛИ ОБРАБОТКИ СИГНАЛОВ

Извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие,временные
соотношения)
Преобразование формата сигнала (телефония с разделением каналов FDMA, TDMA, CDMA)
Сжатие данных (модемы, сотовые телефоны, телевидение HDTV, сжатие MPEG)
Формирование сигналов обратной связи (управление промышленными процессами)
Выделение сигнала из шума (фильтрация, автокорреляция, свертка)
Выделение и сохранение сигнала в цифровом виде для последующей обработки (БПФ)

Какие системы связи используют цифровой сигнал а какие аналоговый

Несмотря на архаичность аналоговая технология ещё используется для телефонной и радио связи. Многие проводные сети до сих пор остаются аналоговыми. В основном это традиционные телефонные линии местных операторов. Но, для магистральной передачи данных связи уже повсеместно используют цифровые каналы. Так же аналоговая технология применяется в простых и дешёвых переносных радиостанциях.

Во всех вновь создаваемых системах используют цифровую технологию обработки сигнала. Это оптоволоконные и проводные линии, сигнализация и телеметрия, военная и гражданская промышленная связь. И конечно же на цифровое вещание переходит телевидение. Аналоговый способ передачи данных исчерпал себя. На смену пришла новая высококачественная и защищенная связь.

Как выглядят спектры аналогового и дискретного сигнала

Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.

Аналоговый сигнал – определение и особенности

Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.

Аналоговый сигнал – определение и особенности

«Цифра» окончательно победила, но не во всех сферах

Телевидение уже практически полностью оцифровано. Фильмы, передачи снимаются в формате, который ATV не поддерживает. «Старое» ТВ не может передать все краски и спецэффекты ни в изображении, ни в звуке. Центральное аналоговое ТВ планомерно отключалось в РФ соответствии с графиком и тому есть множество причин.

Однако большинство местных телеканалов до сих пор вещает только в аналоге и продолжаться это будет до введения в эксплуатацию 3-го мультиплекса.

https://youtube.com/watch?v=cBT0zluxl-E

Однако аналоговый сигнал до сих пор применяется в звукозаписи. Считается, что мелодия на пластинках более плавная и приятная. В производстве музыки самым качественным считается ламповое оборудование, работающее с аналоговым сигналом.

Все меняется, в том числе и телевидение. Поэтому и здесь на смену старой шипящей картинке приходит скорость, качество и разнообразие.

Вы за цифру или аналог?

За цифру!За аналог!

Предыдущая
ТехнологияКарта охвата цифрового эфирного телевидения
Следующая
ТехнологияЧто такое DTV в телевизоре: каналы, возможности, настройка

Что такое цифровое телевидение

Цифровое ТВ — система, позволяющая передавать видео- и аудиосигнал в цифровом формате по проводным линиям или при помощи радиоволн. Сведения о картинке, звуке преобразовывается в последовательность импульсов, которые объединяются в пакеты данных.

Высокая информативность и устойчивость таких пакетов к помехам позволяет обеспечить высокую точность передаваемого сигнала независимо от особенностей внешних условий. Для расшифровки сигнала со стороны приемного оборудования устанавливается дополнительное устройство (тюнер, ресивер), позволяющее обеспечить декодирование полученной информации и преобразование ее в вид, понятный обычному телевизору.

Популярные статьи  Как к работающему выключателю подсоединить отдельно розетку?

А что такое аналоговое телевидение? Это наиболее простая по техническому исполнению, которая еще недавно не имела альтернативы в эфирном вещании. В этом случае видео- и аудиосигнал для каждого канала передается на определенной частоте, постоянно изменяясь по времени.

Такое решение позволяло избавиться от необходимости применения кодирующего и декодирующего оборудования, что существенно упрощало и удешевляло трансляцию. Но при этом обеспечить высокую точность передачи данных практически невозможно, поэтому ожидать высокого качества изображения (HDи другие стандарты) и звука не приходилось. Именно в этом кроется основная причина, объясняющая, зачем переходят с аналогового вещания на цифровое.

Как аналоговый сигнал преобразуется в цифровой и наоборот

Первой в цифровую форму преобразовали математическую, физическую и компьютерную информацию. Описать формулы и расчеты не составило труда. А вот для преображения аналоговой действительности в цифровые массивы уже потребовались специальные устройства. Ими стали аналого-цифровые преобразователи или сокращенно АЦП. Они предназначены для преобразования различных физических величин в цифровые коды. Обратное действие совершают устройства ЦАП.

Любые цифровые передатчики и приёмники оснащены такими преобразователями. Например, сотовому телефону, поступивший звук необходимо обработать и передать в оцифрованном виде. В то же время необходимо принять от другого абонента код, преобразовать и передать напряжение на динамик. Так же и с изображением на смартфонах и в телевизорах. В любом случае первоначальной информацией выступает напряжение.

Существует много видов АЦП, но самыми распространёнными являются следующие:

  • параллельного преобразования;
  • последовательного приближения;
  • дельта-сигма, с балансировкой заряда.

Преобразования в АЦП понятийно связаны с измерением и сравнением. Кодировка, это процесс сравнения полученных от источника данных с эталоном. То есть полученная аналоговая величина сравнивается с эталонной (с заданным напряжением). Эталоном выступает информация о конкретном цвете, звуке и т.п. Она соответствует заложенным в устройство представлениям о преобразуемом сигнале. Потом данные эталонной величины кодируются для передачи. Во время аналого-цифровой обработки физических превращений сигнала не происходит. С аналогового делается цифровой матрица (модель).

Упрощенно работу любого АЦП можно представить так:

  1. Измерение через определенные интервалы времени амплитуды напряжения.
  2. Сравнение с эталоном и формирование данных.
  3. Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.

Качество передаваемой информации зависит от двух параметров — точности и частоты измерений. Чем точнее измеряется и зашифровывается входящее напряжение, тем качественней передаваемая информация. Поэтому, имеет большое значение, сколько бит может зашифровать преобразователь. Чем плотнее информационный поток, тем точней передача данных. Это выражается в красках экрана, контрастности картинки и чистоте звука. Следующим важным показателем является дискретизация, то есть частота измерений. Чем чаще, тем меньше провалов в измерениях и необходимости сглаживания. В совокупности, чем чаще и точнее преобразователь может измерять и обрабатывать полученное напряжение, тем он лучше.

Формат DSD

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Сигнал, создаваемый по образу и подобию

С аналоговыми сигналами мы сталкиваемся постоянно и наиболее эффектно их можно продемонстрировать с помощью виниловой музыкальной пластинки. На ней звук записан в виде извилистой борозды.

Идущая по ней игла проигрывателя повторяет контур и передает свои движения на устройство, издающее звук. Раньше, в граммофоне для этого использовался раструб, усиливавший амплитуду колебаний и превращавший их в звук.

Можно сказать, что на пластинке был записан именно аналоговый сигнал в чистом виде. И это подводит нас к мысли о том, что он представляет собой информацию о волновом процессе, параметрами которого являются амплитуда (громкость) и частота (тональность звука).

Здесь я хочу сделать научное отступление.

Образованные люди знают, что звук и свет, тепло и УФ излучение и радиосигналы – это все волны определенной частоты. Создавая подобные колебания, мы получаем их аналог (или аналоговый сигнал).

Продолжим рассматривать нашу виниловую пластинку. Мы знаем что граммофон – это позапрошлый век, и со временем он превратился в электроаппаратуру. Что добавилось?

Возле иглы поставили пьезокристалл, который под действием механических колебаний выдавал электрический ток, который уже можно передавать. Его напряжение изменялось такой же частотой и амплитудой, как и звуковой дорожке пластинки. Ток кристалла был ну очень маленький и требовал усиления.

Такое напряжение уже способно смещать сердечник в электромагнитной катушке динамика, заставляя его мембрану колебаться… Правильно, с такой же частотой и амплитудой.

Выходит, сигнал называется аналоговым, потому что он точно повторяет параметры, которые следует передать. И с ним мы сталкиваемся повсеместно:

  • вы сейчас читаете тест. В нем есть буквы-сигналы, аналогичные определенным звукам. А слова, которые вы мысленно произносите при этом – аналоги предметов или действий;
  • любая картина, рисунок или фотография – аналог того, что мы видим;
  • звук, которые превращается в радиоволны FM приемника так же аналоговый сигнал.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: