Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора

Защита трансформаторов напряжения в сетях 3-35 кВ. Необходимо изменить режим заземления нейтрали

  • феррорезонансные перенапряжения;
  • коммутационные перенапряжения;
  • переходные процессы;
  • смещения нейтрали;
  • наличие постоянной составляющей магнитного потока в ТН при автоколебательных процессах в сети.
  • неблагоприятное сочетание ёмкости электрической сети по отношению к земле и нелинейной индуктивности ТН;
  • короткие замыкания;
  • дуговые замыкания на землю;
  • неполнофазная коммутация;
  • коммутация ненагруженных трансформаторов;
  • обрывы проводов.

Два примера повреждения ТН

  • индуктивное сопротивление насыщения ТН и емкостное сопротивление сети относительно земли одного порядка – ХLms 13000 Ом; Xс 9000 Ом (при расчетах не учитывались параметры остального электрооборудования), что является предпосылкой феррорезонансных перенапряжений;
  • включение и отключение трансформатора ЭТЦН-32000/35 производилось на холостом ходу вакуумными выключателями, что вызывает значительные коммутационные перенапряжения .

Рис. 1 Принципиальная схема и характеристики элементов схемы электроснабжения установки «печь-ковш»Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатораРис. 2Принципиальная электрическая схема
RC-цепочки трансформатора
ЭТцН-32000/35Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора
Бороться необходимо с причиной

  • заземление нейтрали обмоток высокого напряжения ТН через резисторы различных значений сопротивлений – от низкоомных до высокоомных;
  • включение резисторов в разомкнутый треугольник обмоток ТН, предназначенных для контроля изоляции сети;
  • включение высокоомных резисторов между питающей сетью и обмотками высокого напряжения ТН;
  • применение антирезонансных ТН типа НАМИ;
  • другие технические решения, например, замена в НАМИ заземляемой электромагнитной фазы емкостным делителем;
  • применение электромагнитных ТН с ненасыщаемой магнитной системой;
  • заземление нейтрали заземляемых ТН через первичную обмотку незаземляемого ТН;
  • заземление нейтрали ТН через первичную обмотку трансформаторов тока (ТТ) с подключенным ко вторичной обмотке ТТ низкоомным резистором.
  • переходные процессы в сети с изолированной нейтралью, содержащей трансформаторы НАМИ-10, могут приводить к глубокому насыщению сердечника фазного ТН;
  • наиболее тяжелым режимом для НАМИ при дуговых замыканиях является режим однополярной дуги, когда зажигание дуги происходит один раз в период промышленной частоты;
  • причинами повреждения трансформаторов НАМИ-10 при длительных дуговых замыканиях в сети с изолированной нейтралью из-за нагрева первичной обмотки фазного трансформатора могут быть:
    • разные напряжения зажигания дуги в положительную и отрицательную полуволну приложенного напряжения,
    • возникновение режима горения дуги с гашением ее на втором периоде вынужденной составляющей тока замыкания на землю в сети с токами замыкания 5 А и более.

Метрология и ТН
Рис. 3Схема защиты ТН 35 кВ
от феррорезонансных перенапряжений,
применяемая в АО «Колэнерго» Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора
НЕ ВСЕ ПРЕДОХРАНИТЕЛИ МОГУТ ЗАЩИТИТЬ ТНТаблица 1. Результаты метрологических
исследований ТН 35 кВ с высокоомными резисторами, включенными между сетью и первичными обмотками ТН

Погрешность Значение сопротивления резистора, включенного на высоковольтный вывод заземляемого ТН, кОм Норма по ГОСТ 1983-2001
15 45
напряжения, % -0,283 -0,802 -1,78 ± 0,5
угловая +9,2′ +22′ +48′ ± 20′

Таблица 2.
Предельно-допустимые
длительные токи ТН 3-35 кВ

Класс напряжения, кВ Предельно-допустимый длительный ток в первичных обмотках ТН, А
3 0,144
6 0,115
10 0,109
35 0,049

Рис. 4
Ампер-секундная характеристика
предохранителя типа ПКН 001 на 10 кВДействия электротехнического персонала при перегорании высоковольтного предохранителя трансформатораРис. 5Ампер-секундная характеристика
предохранителя типа ПКН 001 на 35 кВДействия электротехнического персонала при перегорании высоковольтного предохранителя трансформатораРис. 6Ампер-секундная характеристика встроенного защитного предохранительного устройства трансформаторов ЗНОЛП-6 и ЗНОЛП-10Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора
Требуется резистивное заземление нейтрали!Выводы Список литературы

Как сделать индикатор перегорания предохранителя своими руками

В продаже есть автомобильные предохранители с индикатором их неисправности. В корпусе предохранителя вмонтирована миниатюрная лампочка накаливания или светодиод, начинающие светиться при перегорании предохранителя. Такой индикатор перегорания авто предохранителя можно собрать своими руками по ниже предложенной на фотографии электрической схеме.

Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора

Для этого достаточно подсоединить параллельно контактам предохранителя, любой светодиод VD1 через токоограничивающий резистор R1 или миниатюрную лампочку, рассчитанную на напряжение 12 В. Индикатор перегорания предохранителя можно смонтировать как в корпусе предохранителя, так и установить на колодке его держателя. Второй вариант предпочтительнее, так как при замене предохранителя индикатор останется на месте. Индикатор не будет светить при перегоревшем предохранителе, если не подключена нагрузка.

Приведенная на фотографии схема индикатора перегорания предохранителя или срабатывании автоматического выключателя с успехом может работать и в бытовой электросети при питающем напряжении 220 В.

Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора

Достаточно увеличить номинал резистора R1 до 300-500 кОм и для защиты светодиода VD1 от пробоя обратным напряжение дополнить схему диодом VD2 любого типа, рассчитанного на обратное напряжение не менее 300 В. Подойдет, например, широко применяемый отечественный диод КД109Б или импортный 1N4004.

Для сети переменного тока 220 В можно индикатор перегорания предохранителя или автоматического выключателя сделать на неоновой лампочке.

Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора

О принципе работы схем индикаторов и о расчете номиналов резистора с помощью онлайн калькулятора в зависимости от типа используемого светодиода или неоновой лампочки с примерами монтажа вопрос подробно рассмотрен в статье сайта «Схема подключения выключателя с подсветкой».

Время горения

Время перегорания данной плавкой вставки в высоковольтных предохранителях на 10 кВ — это очень важный показатель. Зависит этот параметр от того, насколько большой ток будет проходить через предохранитель. Чаще всего полученное значение называют либо защитной, либо токовременной характеристикой плавкой вставки. По этому значению можно определить, сколько потребуется времени прибору для отключения цепи при выбранном значении тока. При помощи проведения специальных расчетов также можно будет выяснить параметры селективной эксплуатации предохранителей и релейную защиту электрической установки.

Вам будет интересно:Гибкий неоновый шнур: описание и применение

Здесь важно знать, что ток, который сможет расплавить плавкий элемент, зависит еще и от конструкции прибора, от физических данных самого элемента, к примеру, от материала, формы, длины, поперечного сечения. Многие не знают, но в данном случае весомый вклад будет вносить и температура окружающего воздуха

Стоит добавить, что высоковольтный предохранитель на 10 000 Вольт может эксплуатироваться достаточно долго, если через его плавкий элемент будет проходить либо его номинальный, либо же меньший электрический ток. Во время проведения электрического тока рабочего значения вставка также будет нагреваться, но при этом она вовсе не теряет свою форму и структуру.

Популярные статьи  Светодиодные светильники уличного освещения

Как рассчитать ток плавкой вставки для трансформатора по стороне ВН

В электрических сетях нередко возникают аварийные ситуации, которые могут вывести из строя дорогостоящее оборудование, одним из элементов которого является трансформатор. Для того чтобы защитить трансформатор от повреждения необходимо установить защиту от сверхтоков.

Высоковольтный предохранитель – один из вариантов защиты силового трансформатора от повреждения. Он осуществляет разрыв электрической цепи (разрушение плавкой вставки) при превышении тока выше допустимого значения (номинала предохранителя).

Высоковольтный предохранитель защитит обмотку трансформатора только в том случае, если он был правильно выбран по току. Рассмотрим, как рассчитать ток для плавкой вставки для трансформатора по стороне высокого напряжения (ВН).

При выборе предохранителя в первую очередь нужно учитывать класс напряжения: номинальное напряжение предохранителя должно быть равно классу напряжения электрической сети. Установка высоковольтного предохранителя на номинальное напряжение ниже напряжения питающей сети приведет к пробою или перекрытию изоляции, что в свою очередь приведет к междуфазному короткому замыканию. Также запрещается устанавливать предохранители на напряжение ниже номинального для предохранителя – это может привести к возникновению перенапряжений при коротком замыкании.

Выбор плавкой вставки по номинальному току отключения

Номинальный ток отключения (срабатывания) предохранителя должен быть не меньше максимального значения тока короткого замыкания для точки электрической сети, где будет установлен предохранитель. Для силового трансформатора это ток трехфазного замыкания на выводах обмотки высокого напряжения – места установки плавких предохранителей.

При расчете тока короткого замыкания учитывается наиболее тяжелый режим, с минимальным сопротивлением до места предполагаемого повреждения.

Токи короткого замыкания рассчитывают индивидуально с учетом всей схемы питающей электросети.

Предохранители для защиты трансформатора по стороне ВН выпускают на номинальный ток отключения (предельно отключаемый ток) в диапазоне 2,5-40 кА.

Если нет данных о величине токов короткого замыкания на участке электросети, то рекомендуется выбирать максимальное значение номинального тока отключения для плавкой вставки.

Выбор номинального тока плавкой вставки предохранителя

Высоковольтный предохранитель защищает обмотку высокого напряжения силового трансформатора не только от коротких замыканий, но и от перегрузки, поэтому при выборе плавкой вставки необходимо учитывать и номинальный рабочий ток.

При выборе номинального тока плавкой вставки нужно учитывать несколько факторов. Во-первых, силовой трансформатор в процессе работы может подвергаться кратковременным перегрузкам.

Во-вторых, при включении трансформатора возникают броски тока намагничивания, которые превышают номинальный ток первичной обмотки.

Также нужно обеспечить селективность работы с защитой, установленной на стороне низкого напряжения (НН) и на отходящих линиях потребителей. То есть в первую очередь должны срабатывать автоматические выключатели (предохранители) на стороне низкого напряжения отходящих линий, которые идут непосредственно на нагрузку к потребителям.

Если эта защита по той или иной причине не срабатывает, то должен сработать автомат (предохранитель) ввода стороны НН силового трансформатора. Предохранители на стороне ВН в данном случае — это резервирующая защита, которая должна срабатывать в случае перегрузки обмотки низкого напряжения и отказе защит со стороны НН.

Исходя из вышеперечисленных требований, плавкая вставка выбирается по двухкратному номинальному току обмотки высокого напряжения.

Таким образом, высоковольтные предохранители, установленные на стороне ВН, защищают от повреждений участок электрической цепи до ввода трансформатора, а также от внутренних повреждений самого силового трансформатора. А предохранители (автоматические выключатели) со стороны НН силового трансформатора защищают сам трансформатор от перегрузок выше допустимого предела, а также от коротких замыканий в сети низкого напряжения.

Типы предохранителей СВЧ

В микроволновой печи есть целых три разных типа предохранителя — это сетевой и два высоковольтных.

Высоковольтный предохранитель для СВЧ-печи служит защитой для такого элемента, как магнетрон. Это высоковольтный трансформатор, который и нуждается в защите

Сам же защитный элемент располагается конструктивно рядом с ним, но при этом, если обратить внимание на схему, можно заметить, что он размыкает цепь между входом и выходом из высоковольтного блока

Что касается второго предохранителя аналогичного типа, то он имеется только у тех СВЧ-печей, которые обладают электронной панелью управления. При этом такая панель должна быть питаться от небольшого трансформатора малой мощности. Он будет заниматься преобразованием электрического тока домашней сети в напряжение, которое требуется для работы панели.

Формула для расчета диаметра проволоки предохранителя по мощности электроприбора

Мощность часто указывают на этикетках, приклеенных на изделиях. Если на изделии указана потребляемая мощность, то можно рассчитать номинальный ток предохранителя по нижеприведенной формуле.

где
I nom  – номинальный ток защиты предохранителя, А;
P max – максимальная мощность нагрузки, Вт;
U – напряжение питающей сети, В.

Но гораздо удобнее воспользоваться готовыми данными из таблиц

Обратите внимание, первая таблица служит для выбора номинала предохранителя изделий, питающихся от бытовой электросети 220 В, а вторая, для изделий, используемых в автомобилях с напряжением бортовой сети 12 В

Максимальная мощность потребления электроприбором, ватт (BA) 10 50 100 150 250 500 800 1000 1200 1600 2000 2500 3000 4000 6000 8000 10000
Номинал стандартного предохранителя, А 0,1 0,25 0,5 1,0 2,0 3,0 4,0 5,0 6,0 8,0 10,0 12,0 15,0 20,0 30,0 40,0 50,0

Рассмотрим на примере как выбирать предохранитель.
Телевизор перестал работать после грозы. Определено, что сгорел предохранитель. Номинал его не известен. На этикетке задней крышки написано, что потребляемая мощность составляет 120 Вт, бывает, что пишут и 120 ВА. Это обозначение одной и той же мощности, но по стандартам разных стран. По таблице получается, что для электроприборов с максимальной потребляемой мощностью 120 Вт (ближайшее значение 150 Вт) является предохранитель на 1 А.

Методика подбора предохранителя для защиты бортовой электропроводки автомобиля ничем не отличается от выбора для бытовой электропроводки 220 В.

Мощность электроприбора, ватт (BA) до 50 до 75 до 100 до 150 до 200 до 250 до 300 до 400 до 600 до 700
Номинал стандартного предохранителя, А 5,0 7,5 10,0 15,0 20,0 25,00 30,0 40,0 60,0 70,0
Цвет корпуса предохранителя оранжевый коричневый красный голубой желтый прозрачный зеленый фиолет синий черный

Если после двух замен предохранители каждый раз перегорали, значит, поврежден электроприбор и требуется уже его ремонт. Попытка установить предохранитель на больший ток может только нанести еще дополнительный вред изделию вплоть до неремонтопригодности.

Популярные статьи  Передвижное электрооборудование: что это такое, определение, примеры, подключение

Калькулятор для расчета тока предохранителя

Если в таблицах нет данных для Вашего случая, например, напряжение питания изделия составляет 24 В или 110 В, то можете самостоятельно с помощью приведенного ниже онлайн калькулятора выполнить расчет.

  Онлайн калькулятор для определения тока предохранителя  
   Максимальная мощность нагрузки, Вт:  
  Напряжение питающей сети, В:  
  

При расчете на калькуляторе Вы получите точное значение тока. Для надежной работы предохранителя необходимо, чтобы его номинал был не менее чем на 5% больше. Например, если получено расчетное значение тока 1 А, то нужно брать предохранитель большего ближайшего номинала из стандартного ряда, то есть 2 А.

Иногда попытки определить номинал предохранителя считыванием информации не получается. На электроприборе надписей нет, на предохранителе не читаемая маркировка. При наличии амперметра, и опыта работы с ним, то вынув предохранитель и подключив амперметр к контактам колодки, в котором был установлен предохранитель, можно измерять ток и тем самым определить его номинал.

Но тут есть подводный камень. Если предохранитель вышел из строя из-за неисправности электроприбора, то ток может быть намного больше, чем должен быть, в дополнение можно еще и вывести из строя измерительный прибор.

3.1. Отключения

3.1.1. При подготовке рабочего места должны быть отключены:

— токоведущие части, на которых будут производиться работы;

— неогражденные токоведущие части, к которым возможно случайное приближение людей, механизмов и грузоподъемных машин на расстояние менее указанного в таблице 1.1;

— цепи управления и питания приводов, закрыт воздух в системах управления коммутационными аппаратами, снят завод с пружин и грузов у приводов выключателей и разъединителей.

3.1.2. В электроустановках напряжением выше 1000 В с каждой стороны, с которой коммутационным аппаратом на рабочее место может быть подано напряжение, должен быть видимый разрыв. Видимый разрыв может быть создан отключением разъединителей, снятием предохранителей, отключением отделителей и выключателей нагрузки, отсоединением или снятием шин и проводов.

Силовые трансформаторы и трансформаторы напряжения, связанные с выделенным для работ участком электроустановки, должны быть отключены и схемы их разобраны также со стороны других своих обмоток для исключения возможности обратной трансформации.

3.1.3. После отключения выключателей, разъединителей (отделителей) и выключателей нагрузки с ручным управлением необходимо визуально убедиться в их отключении и отсутствии шунтирующих перемычек.

3.1.4. В электроустановках напряжением выше 1000 В для предотвращения ошибочного или самопроизвольного включения коммутационных аппаратов, которыми может быть подано напряжение к месту работы, должны быть приняты следующие меры:

у разъединителей, отделителей, выключателей нагрузки ручные приводы в отключенном положении должны быть заперты на механический замок (в электроустановках напряжением 6-10 кВ с однополюсными разъединителями вместо механического замка допускается надевать на ножи диэлектрические колпаки);

у разъединителей, управляемых оперативной штангой, стационарные ограждения должны быть заперты на механический замок;

у приводов коммутационных аппаратов, имеющих дистанционное управление, должны быть отключены силовые цепи и цепи управления, а у пневматических приводов, кроме того, на подводящем трубопроводе сжатого воздуха должна быть закрыта и заперта на механический замок задвижка и выпущен сжатый воздух, при этом спускные клапаны должны быть оставлены в открытом положении;

у грузовых и пружинных приводов включающий груз или включающие пружины должны быть приведены в нерабочее положение;

должны быть вывешены запрещающие плакаты.

Меры по предотвращению ошибочного включения коммутационных аппаратов КРУ с выкатными тележками должны быть приняты в соответствии с пп. 4.6.1, 4.6.2 настоящих Правил.

3.1.5. В электроустановках напряжением до 1000 В со всех токоведущих частей, на которых будет проводиться работа, напряжение должно быть снято отключением коммутационных аппаратов с ручным приводом, а при наличии в схеме предохранителей снятием последних.

При отсутствии в схеме предохранителей предотвращение ошибочного включения коммутационных аппаратов должно быть обеспечено такими мерами, как запирание рукояток или дверец шкафа, закрытие кнопок, установка между контактами коммутационного аппарата изолирующих накладок и др. При снятии напряжения коммутационным аппаратом с дистанционным управлением необходимо разомкнуть вторичную цепь включающей катушки.

Перечисленные меры могут быть заменены расшиновкой или отсоединением кабеля, проводов от коммутационного аппарата либо от оборудования, на котором должны проводиться работы.

Необходимо вывесить запрещающие плакаты.

3.1.6. Отключенное положение коммутационных аппаратов напряжением до 1000 В с недоступными для осмотра контактами определяется проверкой отсутствия напряжения на их зажимах либо на отходящих шинах, проводах или зажимах оборудования, включаемого этими коммутационными аппаратами.

Технологический процесс ремонта и замены предохранителя

Во многих случаях трансформатор перестаёт работать из-за срабатывания термопредохранителя. Это происходит не только из-за перегрева обмоток, но и из-за кратковременного повышения тока. В этом случае термозащита выполняет функцию обычного предохранителя.

Для восстановления работоспособности аппарата защитный элемент необходимо заменить на аналогичный или на обычный предохранитель. Есть два варианта подключения термозащиты.

Соединение проводов на плате

В этом случае достаточно закоротить вывода термозащиты или припаять параллельно вышедшему из строя элементу на длинных проводах исправный. Он укладывается на вторичную обмотку и закрепляется скотчем.

Действия электротехнического персонала при перегорании высоковольтного предохранителя трансформатора

Соединение внутри катушек

В этом случае необходимо следующее:

  • демонтировать трансформатор;
  • разобрать магнитопровод;
  • снять со вторичной обмотки наружный слой изоляции;
  • отделить от катушки термопредохранитель;
  • отпаять его от вывода первичной обмотки;
  • припаять вместо него исправный элемент и поместить на место старого;
  • обмотать всю конструкцию изоляционным материалом;
  • собрать трансформатор и подключить его к плате.

Важно! Причиной срабатывания термозащиты может быть неисправность электронной схемы, поэтому после сборки работоспособность аппарата необходимо тщательно проверить

Принцип действия и виды плавких предохрани­телей

Плавкий предохранитель как защитный аппа­рат применяется в электрических сетях уже более 100 лет. В основе его работы лежит известный закон Джоуля — Ленца (1841 г.), согласно которому про­хождение электрического тока по проводнику сопро­вождается выделением теплоты Q (в джоулях):

закон Джоуля — Ленца

Плавкая вставка предохранителя является участ­ком защищаемой электрической цепи, имеющим мень­шее сечение и большее сопротивление R, чем осталь­ные элементы этой цепи. Поэтому при прохождении по цепи тока КЗ плавкая вставка нагревается сильнее других элементов защищаемой цепи, раньше расплав­ляется и тем самым спасает электрическую установку от перегрева и разрушения. Но для прекращения про­хождения тока КЗ, т. е. отключения электрической установки от питающей электросети, недостаточно расплавления вставки, необходимо еще погасить воз­никшую в этом месте электрическую дугу. Быстрое га­шение дуги является важнейшей задачей плавкого предохранителя. По способу гашения электрической дуги плавкие предохранители, применяемые для за­щиты трансформаторов, делятся на две основные группы:

  • предохранители с трубками из газогенерирующего материала (фибры или винипласта), который обильно выделяет газы при высокой температуре горения элек­трической дуги; возникающие в этот момент высокое давление (в предохранителях типа ПР напряжением до 1000 В) или продольное дутье (в предохранителях ПСН напряжением выше 1000 В) обеспечивают бы­строе гашение электрической дуги;
  • предохранители с наполнителем (кварцевым пе­ском), в которых электрическая дуга гасится в ка­нале малого диаметра, образованном телом испа­рившейся плавкой вставки, между крупинками (гра­нулами) кварцевого песка; такие предохранители обычно называют кварцевыми.
Популярные статьи  Как проверить диодный мост на исправность?

На стороне 10 кВ трансформаторов устанавли­ваются главным образом кварцевые предохранители типа ПК, на стороне 0,4 кВ — также преимущественно кварцевые типа ПН-2, Кварцевые предохранители имеют несколько важных положительных свойств: они обладают токоогранпчивающсй способностью (благодаря очень быстрому гашению электрической дуги ток КЗ не успевает достичь своего максимального ампли­тудного значения); плавкие вставки защищены от воздействия внешней среды кварцевым песком и герметично закрытой фарфоровой трубкой, благодаря чему они длительное время не стареют и не требуют замены; конструктивное исполнение предохранителей ПК и ПН-2 предусматривает сигнализацию срабаты­вания, причем контакты сигнального устройства могут давать команду на отключение трехфазного выключа­теля нагрузки, что предотвращает возможность неполнофазного режима работы трансформатора.

При ис­пользовании кварцевых предохранителей заводского изготовления с правильно выбранными параметрами, как правило, можно обеспечить селективность между предохранителями на сторонах ВН и НН трансфор­матора или, по крайней мере, между предохраните­лями на стороне ВН трансформатора и защитными аппаратами на отходящих линиях НН, т. е. не допускать отключения трансформатора от питающей сети при КЗ на шинах НН или на любой из отходящих линий НН.

Электрические характеристики и габаритные размеры патронов.

Плавкие предохранители являются наиболее распространенным средством защиты электрических присоединений (кабельных и воздушных) и машин от перегрузки и тока короткого замыкания. Основными местами установки и применения плавких предохранителей являются электрические щиты и сборки различного напряжения, защита различных силовых и измерительных трансформаторов (например, трансформаторов напряжения типа НТМИ, НКФ) со стороны высокого напряжения. Широко используются предохранители в сетях от 0,4 до 35 кВ в сетях однофазного и трехфазного переменного тока частоты 50 и 60 Гц, постоянного тока различного напряжения.

Для любого типа предохранителей основным элементом является плавкая вставка-патрон предохранителя, которая включается последовательно в цепь защищаемого устройства. Также в состав конструкции предохранителя входит корпус из изолирующего материала и контактная часть для установки и закрепления предохранителя в цепи. Устанавливаются предохранители в специальных контактах на изоляторах.

Для всех типов предохранителей, представленных у нас, наполнителем является кварцевый песок (содержание оксида кремния — не менее 98 %, влажность не выше 3 %). Предварительно песок просушивается при 120—180 °С, его зерна имеют отличные характеристики теплопроводности и большую охлаждающую поверхность. Электрическая дуга горит в узком канале, между зернами песка. При больших токах КЗ вольт-амперная характеристика растет, ток резко уменьшается и электрическое устройство защищается от пробоя изоляции и повреждений.

По типам предохранителей различают несколько вариантов, соответственно классам напряжения. Для электроустановок до 1000 В применяются предохранители типа ПН-2 и ПН-0,1. Свыше 1000 В — предохранители высоковольтные ПКТ (П — предохранитель, К — с кварцевым наполнителем, Т —защита трансформаторов), в состав которых входят патроны ПКТ с фарфоровым корпусом и латунными колпаками, они предназначены для защиты трансформаторов (3—10 кВ) с высокой стороны. Наполнитель — кварцевый песок, плавкий элемент из медной или нихромовой (предохранители ПКН).

Применение предохранителей высоковольтных ПКТ возможно в районах с умеренным климатом (климатическое исполнение «У» по категории 1 в исполнении У1) и умеренно-холодным климатом в исполнении УХЛ (УХЛЗ), что удовлетворяют требованиям нормативных документов. Срабатывание предохранителей типа ПКТ и их патронов ПТ основано на плавлении калиброванной проволоки при прохождении через нее силы тока больше номинального значения. С увеличением значения тока уменьшается время плавления проволоки (вставки).

Электрическая дуга в высоковольтных предохранителях, при этом, гасится в пространстве между зернами кварцевого песка. При коротком замыкании величина тока большая и вставка плавится за время меньше полупериода частоты, потому ток КЗ не успевает достигнуть своего максимального значения, этим самым патроны предохранителей ПКТ выполняют токоограничивающую функцию в условиях отключения короткого замыкания.

3.2.61

Защиту от токов, обусловленных внешними
многофазными КЗ, следует устанавливать:

1) на двухобмоточных трансформаторах — со стороны основного
питания;

2) на многообмоточных трансформаторах, присоединенных тремя
и более выключателями, — со всех сторон трансформатора; допускается не
устанавливать защиту на одной из сторон трансформатора, а выполнять ее со стороны
основного питания, так чтобы она с меньшей выдержкой времени отключала
выключатели с той стороны, на которой защита отсутствует;

3) на понижающем двухобмоточном трансформаторе, питающем
раздельно работающие секции, — со стороны питания и со стороны каждой секции;

4) при применении накладных трансформаторов тока на стороне
высшего напряжения — со стороны низшего напряжения на двухобмоточном
трансформаторе и со стороны низшего и среднего напряжений на трехобомоточном
трансформаторе.

Допускается защиту от токов, обусловленных внешними
многофазными КЗ, предусматривать только для резервирования защит смежных
элементов и не предусматривать для действия при отказе основных защит
трансформаторов, если выполнение для такого действия приводит к значительному
усложнению защиты.

При выполнении защиты от токов, обусловленных внешними
многофазными КЗ, по 3.2.59, п. 2, должны также рассматриваться необходимость и
возможность дополнения ее токовой отсечкой, предназначенной для отключения с
меньшей выдержкой времени КЗ на шинах среднего и низшего напряжений (исходя из
уровня токов КЗ, наличия отдельной защиты шин, возможности согласования сзащитами отходящих элементов).

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: