Диаграммы включения элементов схемы

Краткое введение

Перед тем, как представить использование диаграммы Смита, было бы неплохо представить краткий обзор явления распространения волн для разводки микросхем в условиях РЧ сигналов (выше 100 МГц). Это может быть справедливо и для непредвиденных обстоятельств, таких как линии RS-485, и для предвиденных: между усилителем мощности и антенной, между LNA и понижающим преобразователем/смесителем и т.д.

Хорошо известно, что для достижения передачи максимальной мощности от источника к нагрузке полное сопротивление источника должно равняться комплексно-сопряженной величине полного сопротивления нагрузки, или:

\

Диаграммы включения элементов схемыРисунок 2 – Схема Rи + jXи= Rн — jXн

Для этого условия мощность, передаваемая от источника к нагрузке, максимальна. Кроме эффективной передачи мощности, это условие необходимо, чтобы избежать отражения мощности от нагрузки обратно к источнику. Это особенно верно для высокочастотных приложений, таких как радиочастотные и СВЧ цепи.

Содержание статьи

В этом случае над основной надписью помещают таблицу, выполненную по типу таблицы перечня элементов, в которой помещают наименования при необходимости — тип и обозначение составных частей. При распространении материала используйте пожалуйста ссылку на наш блог! Электрическое торможение осуществляется всеми тремя способами: рекуперативным, электродинамическим и противотоком.Диаграммы включения элементов схемы
Отдельные функциональные части допускается изображать в виде прямоугольников.Диаграммы включения элементов схемы
Все разновидности систем контроллерного управления, как правило, характеризуются ступенчатым регулированием режимов работы электродвигателя. Более того, может осуществляться детализация, которая заключается в том, что для каждой функциональной части разрабатывается отдельная структурная схема.Диаграммы включения элементов схемы
Например, на рис. Над линиями может быть указана дополнительная информация, такая как напряжение, ток или уровень сигналов, временные диаграммы, формы импульсов.Диаграммы включения элементов схемы
Что появилось первым? При выполнении принципиальной схемы на поле схемы допускается помещать различные текстовые данные: указания о марках, сечениях и расцветках проводов и кабелей, которыми должны быть выполнены соединения элементов; указания о требованиях к электрическому монтажу данного изделия см.Диаграммы включения элементов схемы
Если кнопочный выключатель S2 отпустить, то его замыкающий контакт разомкнётся.
Совет полезен?
Как подключить магнитный пускатель. Схема подключения.

Диаграммы включения элементов схемы

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Работа с полной проводимостью (адмиттансом)

Диаграмма Смита построена с учетом импеданса (активного и реактивного сопротивлений). После того, как диаграмма Смита построена, ее можно использовать для анализа параметров как в последовательном, так и в параллельном мире. Добавить элементы последовательно просто. Можно добавлять новые элементы и определять их влияние, просто перемещаясь по окружностям к их соответствующим значениям. Однако параллельное включение элементов – другое дело. Это требует учета дополнительных параметров. Часто с параллельными элементами проще работать в мире проводимостей.

Мы знаем, что по определению Y = 1/Z, а Z = 1/Y. Проводимость выражается сименсах, или См. И, поскольку Z является комплексным значением, Y также должна быть комплексным значением.

Следовательно,

\

где

  • Y – полная проводимость (адмиттанс, англ. «admitance»);
  • G –действительная составляющая полной проводимости (англ. «conductance»);
  • B – мнимая составляющая полной проводимости (англ. «susceptance»).

Здесь важно проявлять осторожность. Следуя логическому предположению, мы можем заключить, что G = 1/R, а B = 1/X. Однако это не так

Если использовать это предположение, результаты будут неверными

Однако это не так. Если использовать это предположение, результаты будут неверными.

При работе с полной проводимостью первое, что мы должны сделать, это нормализовать y = Y/Y. Это приводит к y = g + jb. Итак, что происходит с коэффициентом отражения? Проработав следующее выражение:

\[\Gamma = \frac{Z_н — Z_0}{Z_н + Z_0} = \frac{1/Y_н — 1/Y_0}{1/Y_н + 1/Y_0} = \frac{Y_0 — Y_н}{Y_0 + Y_н} = \frac{1-y}{1+y} \qquad (2.21)\]

Оказывается, выражение для G противоположно по знаку выражению z, и Γ(y) = -Γ(z).

Если мы знаем z, мы можем поменять местами знаки Γ и найти точку, расположенную на том же расстоянии от (0, 0), но в противоположном направлении. Тот же результат может быть получен путем поворота на угол 180° вокруг центральной точки (рисунок 7).

Диаграммы включения элементов схемыРисунок 7 – Результаты поворота на 180°

Конечно, хотя Z и 1/Y действительно представляют один и тот же компонент, новая точка отображается как другой импеданс (новое значение имеет другую точку на диаграмме Смита и другое значение коэффициента отражения и т.д.). Это происходит потому, что этот график представляет собой график импеданса. Но новая точка – это, по сути, адмиттанс (полная проводимость). Следовательно, значение, указанное на диаграмме, следует читать в сименсах.

Хотя этого метода достаточно для преобразования, он не работает для вычисления схемы при с параллельно включенными элементами.

Примеры применения

Условия резонанса

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Популярные статьи  Метеостанция на ардуино своими руками

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Виды и построение векторных диаграмм

Векторные диаграммы широко применяются в акустике, электротехнике, оптике и других областях. Они разделяются на два основных вида – точные и качественные.

Для изображения точных векторных диаграмм применяются численные расчеты с условием, что действующие значения будут соответствовать определенным масштабам. Правильное построение дает возможность геометрического определения фаз и амплитудных значений нужных величин.

Для того чтобы сделать построение диаграмм более удобным, необходимо проанализировать состояние неподвижных векторов на определенный момент времени, выбираемый с таким условием, чтобы сама диаграмма приобрела наиболее оптимальный внешний вид.

На оси ОХ будут откладываться действительные числа, а на оси OY – мнимые числа или единицы. С помощью синусоиды отображается движущийся конец проекции на ось OY. Каждое значение напряжения и тока отображается на плоскости в полярных координатах, в соответствии с собственным вектором. Его длина будет отображать значение амплитудной величины тока, а углы будут равны фазам. Для векторов, отображаемых на диаграмме, характерна равновеликая угловая частота, обозначаемая символом ω. Поэтому во время вращения взаимное расположение угловых частот остается неизменным. Это дает возможность при построении диаграмм направить один вектор произвольно, а остальные отобразить по отношению к нему под различными углами в соответствии со сдвигами фаз.

3.3. Схемы электрические структурные (Э1)

3.3.1. Схема структурная – схема, определяющая основные функциональные части изделия, их назначение и взаимосвязи.

Схемы структурные разрабатывают при проектировании изделий на стадиях, предшествующих разработке схем других типов, и пользуются ими для общего ознакомления с изделием.

3.3.2. Функциональным частям на схеме согласно ГОСТ 2.737-68 соответствуют прямоугольники с размерами (12х12) мм, (12х30) мм и условные графические обозначения (рисунки 3.1- 3.4).

Направление хода процессов, происходящих в изделии, обозначают стрелками на линиях взаимосвязи (рисунок 3.2).

При обозначении функциональных частей используют два способа:

текст наименования функциональной группы записывают внутри прямоугольника (рисунки 3.1, 3.3);

при большом количестве функциональных частей вместо наименований допускается проставлять порядковые номера, которые наносят над прямоугольниками, как правило, в правом верхнем углу, сверху вниз в направлении слева направо (рисунок 3.4). В этом случае наименование указывают на поле схемы.

3.3.3. Толщина линий прямоугольников, квадратов и условных графических обозначений, должна быть равна толщине линий связи.

Примеры графических обозначений устройств связи даны в приложении Г.

Рисунок 3.1 — Структурная схема приемника прямого усиления

Рисунок 3.2

Рисунок 3.3

Рисунок 3.4 – Структурная схема приемника прямого усиления

1 – антенна; 2 – колебательный контур; 3 – детектор; 4 – усилитель; 5 – источник питания; 6 – телефон;

Визуализация данных связей участников на лучевой диаграмме

Начнем сначала с построения серых пунктирных линий для отображения всех слабых связей между участниками. А потом сделаем те же самые действия для серых сплошных линий сильных связей. Выделите диапазон ячеек I3:J43 и выберите инструмент: «ВСТАВКА»-«Диаграммы»-«Точечная с прямыми отрезками».

Диаграммы включения элементов схемы

Из диаграммы следует удалить: сетку, оси координат, название и легенду.

Затем из дополнительного меню: «РАБОТА С ДИАГРАММАМИ»-«КОНСТРУКТОР»-«Выбрать данные» в окне «Выбор источника данных» используйте кнопку «Добавить» для добавления остальных 20-ти рядов:

Диаграммы включения элементов схемы

Для каждой линии нужно присвоить один и тот же формат. Удобно выбирать ряды линий из дополнительного меню: «РАБОТА С ДИАГРАММАМИ»-«ФОРМАТ»-«Текущий фрагмент». Из выпадающего списка выбираем необходимый нам ряд, а ниже жмем кнопку «Формат выделенного» чтобы приступить к форматированию:

Диаграммы включения элементов схемы

Далее добавляем еще 2 ряда для выделения цветом выбранных участников. Для этого используем значения последней таблицы:

Диаграммы включения элементов схемы

Не забудем изменить цвета линий на зеленый и синий – соответственно.

Осталось еще добавить подписи данных. Для этого используем вторую таблицу с базовыми координатами точек участников при создании еще одного ряда:

Диаграммы включения элементов схемы

Выделяем последний ряд, щелкаем по полюсу возле диаграммы и отмечаем галочкой опцию «Подписи данных». Сам ряд лучше скрыть, убрав завивку для его линий.

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Популярные статьи  Основы электротехники для начинающих

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
Лампочка

Подойдёт накаливания
Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
Ключ
Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
Провода

В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет

Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра

К примеру, действующее значение ЭДС.

Режим короткого замыкания

Режимом короткого замыкания называют режим при замкнутой накоротко вторичной обмотке . Схема замещения трансформатора в этом режиме имеет вид, представленный на рис. 11. Для режима короткого замыкания справедливы следующие уравнения:

Векторная диаграмма (рис. 12) в этом режиме строится аналогично векторной диаграмме для режима холостого хода. Угол  определяется параметрами вторичной обмотки:. Особенность этого режима состоит в том, что ЭДС  значительно отличается от напряжения  из-за больших токов короткого замыкания. Учитывая, что , током  можно пренебречь. Тогда схема замещения может быть упрощена (рис. 13).
Из схемы замещения получаем. Если принять, что , то действующее значение ЭДС  будет равно половине действующего значения напряжения :

. Поэтому в режиме короткого замыкания магнитопровод трансформатора оказывается ненасыщенным.
Действующее значение тока короткого замыкания в соответствии с рис. 13, где  — модуль комплексного сопротивления короткого замыкания трансформатора. При  ток короткого замыкания может превосходить номинальное значение в 10-50 раз. Поэтому в условиях эксплуатации режим короткого замыкания является аварийным

Однако этот режим часто проводится при пониженном напряжении для определения параметров трансформатора.
Напряжение , при котором ток короткого замыкания равен номинальному, называется напряжением короткого замыкания и обозначается

Отсюда следует, что напряжение короткого замыкания  представляет собой падение напряжения на внутреннем сопротивлении трансформатора при номинальном токе и поэтому является важной характеристикой трансформатора. Если совместить вещественную ось с вектором тока , то комплексное значение  можно представить как , где ,  — активная и реактивная составляющие напряжения короткого замыкания

Обычно модуль  выражают в относительных единицах,, либо в процентах,. Величина  оказывает существенное влияние на свойства трансформатора в рабочих и аварийных режимах. Поэтому  является паспортной величиной наряду с номинальными данными

Если совместить вещественную ось с вектором тока , то комплексное значение  можно представить как , где ,  — активная и реактивная составляющие напряжения короткого замыкания. Обычно модуль  выражают в относительных единицах,, либо в процентах,. Величина  оказывает существенное влияние на свойства трансформатора в рабочих и аварийных режимах. Поэтому  является паспортной величиной наряду с номинальными данными.

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

Круговая диаграмма

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

Линейная диаграмма

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Популярные статьи  Разность потенциалов

Вычисление эквивалентного импеданса

При решении задач, в которых элементы, соединенные последовательно и параллельно, смешиваются вместе, мы можем использовать одну и ту же диаграмму Смита и вращать ее вокруг любой точки, где существуют преобразования из z в y или из y в z.

Рассмотрим схему на рисунке 8 (элементы нормированы с Z = 50 Ом). Последовательное реактивное сопротивление (x) положительно для индуктивности и отрицательно для емкости. Мнимая часть полной проводимости (b) положительна для емкости и отрицательна для индуктивности.

Диаграммы включения элементов схемыРисунок 8 – Многоэлементная схема

Эта схема требует упрощения (рисунок 9).

Диаграммы включения элементов схемыРисунок 9 – Цепь, показанная на рисунке 8, с элементами, выделенными для анализа

Начиная с правой стороны, где находятся резистор и катушка индуктивности со значением 1, мы строим последовательную точку, где пересекаются окружность r = 1 и окружность x = 1. Это становится точкой A. Поскольку следующим элементом является элемент в шунте (включен параллельно) переключаемся на диаграмму Смита для адмиттанса (вращая всю плоскость на 180°). Однако для этого нам нужно преобразовать предыдущую точку в адмиттанс. Она становится A’. Затем мы поворачиваем плоскость на 180°. Сейчас мы находимся в режиме адмиттанса. Шунтирующий элемент можно добавить, пройдя по окружности проводимости на расстояние, соответствующее 0,3. Это должно быть сделано против часовой стрелки (отрицательное значение) и дает точку B. Затем у нас идет еще один элемент, включенный последовательно. Мы снова переключаемся обратно на диаграмму Смита для импеданса.

Перед тем, как это сделать, необходимо снова преобразовать предыдущую точку в импеданс (это был адмиттанс). После преобразования мы можем определить B’. Используя ранее описанную процедуру, диаграмма снова поворачивается на 180°, чтобы вернуться в режим импеданса. Для добавления последовательного элемента необходимо пройти по окружности активного сопротивления на расстояние, соответствующее 1,4, и отметить точку C. Это нужно сделать против часовой стрелки (отрицательное значение). Для следующего элемента выполняется такая же операция (преобразование в адмиттанс и поворот плоскости). Затем перемещаемся на заданное расстояние (1,1) по часовой стрелке (поскольку значение положительное) вдоль окружности постоянной действительной составляющей проводимости. Мы отмечаем это как точку D. Наконец, мы возвращаемся обратно в режим импеданса и добавляем последний элемент (последовательную индуктивность). Затем определяем требуемое значение z, расположенное на пересечении окружности активного сопротивления 0,2 и окружности реактивного сопротивления 0,5. Таким образом, z определено равным 0,2 + j0,5. Если характеристическое сопротивление системы составляет 50 Ом, то Z = 10 + j25 Ом (рисунок 10).

Диаграммы включения элементов схемыРисунок 10 – Элементы цепи, нанесенные на диаграмму Смита
(больший масштаб – в файле PDF)

Фотодиоды

В фотодиодах на основе p-n-переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей. Схематически фотодиод изображен на рисунке:

При попадании кванта света с энергией hγ в полосе собственного поглощения в полупроводнике возникает пара неравновесных носителей – электрон и дырка. При регистрации электрического сигнала необходимо зарегистрировать изменение концентраций носителя. Как правило, используется принцип регистрации неосновных носителей заряда.

При разомкнутой внешней цепи (SA разомкнут, R = ∞) для случая, когда внешнее напряжение отсутствует, ток через внешнюю цепь не протекает. В этом случае напряжение на выводах фотодиода будет максимальным. Эту величину VG называют напряжением холостого хода Vxx. Напряжение Vxx(фото ЭДС) можно также определить непосредственно, подключая к выводам фотодиода вольтметр, но внутреннее сопротивление вольтметра должно быть много больше сопротивления p-n–перехода. В режиме короткого замыкания (SA замкнут) напряжение на выводах фотодиода VG = 0. Ток короткого замыкания Iкз во внешней цепи равен фототоку Iф

Iкз = Iф

На рисунке показано семейство ВАХ фотодиода как при отрицательной, так и при положительной полярности фотодиода.

При положительных напряжениях VG ток фотодиода быстро возрастает (пропускное направление) с увеличением напряжения. При освещении же общий прямой ток через диод уменьшается, так как фототок направлен противоположно току от внешнего источника.

ВАХ p-n-перехода, располагаясь во 2 квадранте (VG > 0, I < 0), показывает, что фотодиод можно использовать как источник тока. На этом базируется принцип работы солнечных батарей на основе p-n-переходов (режим фотогенератора). Световая характеристика представляет собой зависимость величины фототока Iф от светового потока Ф, падающего на фотодиод. Сюда же относится и зависимость Vxx от величины светового потока. Количество электронно-дырочных пар, образующихся в фотодиоде при освещении, пропорционально количеству фотонов, падающих на фотодиод. Поэтому фототок будет пропорционален величине светового потока:

Iф = кФ,

где К — коэффициент пропорциональности, зависящий от параметров фотодиода.

При обратном смещении фотодиода ток во внешней цепи пропорционально световому потоку и не зависит от напряжения VG (режим фото-преобразователя). Фотодиоды являются быстродействующими приборами и работают на частотах 107- 1010 Гц. Фотодиоды широко применяются в оптопарах «cветодиод-фотодиод»

Порядок построения диаграмм

Таким образом, с помощью векторных диаграмм, возможно очень четко представить себе опережение или отставание, затрагивающее различные электрические величины. В качестве примера можно рассмотреть ток, у которого величина изменяется по определенному закону: i = Im sin (ω t + φ).

Для построения диаграммы необходимо от начальной точки координат «0» под определенным углом φ провести вектор Im. Его величина будет соответствовать такому же току. Направление вектора следует выбирать таким образом, чтобы он составлял угол с осью ОХ, равный фазе φ. Проекция вектора на вертикальной оси даст значение мгновенного тока в первоначальный период времени.

В большинстве случаев на векторных диаграммах отображаются не амплитудные, а действующие значения. Отличие действующих и амплитудных значений представляет собой пропорцию в определенном масштабе: I = Im /√2. Таким образом, векторная диаграмма напряжений и токов дает возможность быстро и просто выполнять все необходимые действия с двумя основными параметрами при расчетах электрических цепей и получать точные результаты.

Умножитель напряжения

Расчет делителя напряжения

В чем измеряется напряжение

Как проверить напряжение мультиметром в сети: измерение вольтажа в розетке 220 вольт

Индикатор напряжения на светодиодах: схема, как сделать своими руками самодельный указатель напряжения в сети

Расчет тока по мощности и напряжению

Заключение

Учитывая сегодняшнее богатство программного обеспечения и доступность компьютеров, можно усомниться в необходимости такого базового и фундаментального метода расчета базовых схем.

На самом деле, то, что делает инженера настоящим инженером, – это не только академические знания, но и способность использовать для решения задачи ресурсы всех типов. Вставить в программу несколько чисел и заставить ее выдавать решения легко. Когда решения сложны и многогранны, компьютер для выполнения основной работы особенно удобен. Однако знание базовых теории и принципов, которые были перенесены на компьютерные платформы, и откуда они пришли, делает инженера или разработчика более разносторонним и уверенным профессионалом, результаты делает более надежными.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: