Закон электромагнитной индукции — формула

Содержание:

Электромагнитная индукция против магнитной индукции

Электромагнитная индукция и магнитная индукция — два очень важных понятия в теории электромагнитного поля. Применения этих двух концепций многочисленны. Эти теории настолько важны, что без них электричество было бы недоступно. В этой статье мы обсудим разницу между электромагнитной индукцией и магнитной индукцией.

Что такое магнитная индукция?

Магнитная индукция — это процесс намагничивания материалов во внешнем магнитном поле. Материалы можно разделить на несколько категорий в зависимости от их магнитных свойств. Парамагнитные материалы, диамагнитные материалы и ферромагнитные материалы — это лишь некоторые из них. Есть также некоторые менее распространенные типы, такие как антиферромагнитные материалы и ферримагнетики. Диамагнетизм проявляется в атомах только с парными электронами. Полный спин этих атомов равен нулю. Магнитные свойства возникают только за счет орбитального движения электронов. Когда диамагнитный материал помещается во внешнее магнитное поле, он создает очень слабое магнитное поле, антипараллельное внешнему полю. Парамагнитные материалы имеют атомы с неспаренными электронами. Электронный спин этих неспаренных электронов действует как небольшой магнит, который намного сильнее, чем магниты, созданные орбитальным движением электронов. Когда эти небольшие магниты помещены во внешнее магнитное поле, они выравниваются по полю, создавая магнитное поле, параллельное внешнему полю. Ферромагнитные материалы также являются парамагнитными материалами с зонами магнитных диполей в одном направлении, даже до приложения внешнего магнитного поля. При приложении внешнего поля эти магнитные зоны выравниваются параллельно полю, так что они усиливают поле. Ферромагнетизм остается в материале даже после удаления внешнего поля, но парамагнетизм и диамагнетизм исчезают, как только внешнее поле устраняется.

Что такое электромагнитная индукция?

Электромагнитная индукция — это эффект тока, протекающего через проводник, который движется через магнитное поле. Закон Фарадея — самый важный закон в отношении этого эффекта. Он заявил, что электродвижущая сила, создаваемая вокруг замкнутого пути, пропорциональна скорости изменения магнитного потока через любую поверхность, ограниченную этим путем. Если замкнутый путь представляет собой петлю на плоскости, скорость изменения магнитного потока по площади петли пропорциональна электродвижущей силе, генерируемой в петле. Однако сейчас этот цикл не является консервативным; поэтому общие электрические законы, такие как закон Кирхгофа, не применимы в этой системе. Следует отметить, что постоянное магнитное поле на поверхности не создает электродвижущей силы. Магнитное поле должно изменяться, чтобы создать электродвижущую силу. Эта теория является основной концепцией производства электроэнергии. Практически вся электроэнергия, за исключением солнечных батарей, вырабатывается с помощью этого механизма.

В чем разница между электромагнитной и магнитной индукцией?

• Магнитная индукция может создавать или не создавать постоянный магнит. Электромагнитная индукция создает ток, который противодействует изменению магнитного поля.

• В магнитной индукции используются только магниты и магнитные материалы, а в электромагнитной индукции используются магниты и электрические цепи.

Закон Фарадея

Явление электромагнитной индукции определяется появлением электрического тока в электрически проводящей замкнутой цепи при изменении магнитного потока через область этой цепи.

Основной закон Фарадея состоит в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, основанная на приведенных выше пояснениях, вопросов не вызывает, то знак «-» может вызвать сомнения. Оказывается, существует правило Ленца, русского ученого, проводившего свои исследования на основе постулатов Фарадея. Согласно Ленцу, знак «-» указывает направление возникающей ЭДС, то есть индукционный ток направлен таким образом, что магнитный поток, который он создает через область, ограниченную цепью, стремится предотвратить изменение потока, которое вызывает такой ток.

Основные понятия и законы электростатики

Закон Кулона:
сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату их расстояния:

Коэффициент пропорциональности в этом законе

В SI коэффициент k записывается как

Потенциал электрического поля – это отношение потенциальной энергии заряда в поле к этому заряду:

Проекция напряженности электрического поля на ось и потенциал связаны соотношением

Электрическая емкость тела называется величиной отношения

Основные понятия и законы постоянного тока

Электрический ток – это прямое движение электрических зарядов. В разных веществах переносчиками заряда выступают элементарные частицы разного знака. Направление движения положительных зарядов считается положительным направлением тока. Электрический ток количественно характеризуется его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи:

R
ρ

При параллельном подключении сопротивление, обратное сопротивлению, равно сумме обратных сопротивлений:

где t – время, I – сила тока, U – разность потенциалов, q – прошедший заряд.
Закон Джоуля-Ленца:

Основные понятия и законы магнитостатики

Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, необходимо определить как направление этого вектора, так и его величину. Направление вектора магнитной индукции связано с ориентационным действием магнитного поля на магнитную стрелку. Направление вектора магнитной индукции берется от южного полюса S к северному полюсу N магнитной стрелки, которая свободно установлена ​​в магнитном поле.
Направление вектора магнитной индукции прямого проводника с токами можно определить с помощью правила подвеса:
если направление поступательного перемещения кардана совпадает с направлением тока в проводнике, то направление вращения ручки карданного подвеса совпадает с направлением вектора магнитной индукции.
Величина вектора магнитной индукции – это отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка:

Популярные статьи  Углекислотный огнетушитель - устройство, принцип действия, правила использования

Основные понятия и законы электромагнитной индукции

Если через замкнутую проводящую цепь проникает переменный магнитный поток, в этой цепи возникают ЭДС и электрический ток. Эта ЭДС называется ЭДС электромагнитной индукции, а ток – индукцией. Явление их возникновения называется электромагнитной индукцией. ЭДС индукции можно рассчитать по основному закону электромагнитной индукции или по закону Фарадея:

Электромагнитные колебания и волны

Колебательный контур – это электрическая цепь, состоящая из последовательно включенных конденсатора с емкостью C и катушки с индуктивностью L (см. Рис. 7).

Для незатухающих свободных колебаний в контуре циклическая частота определяется по формуле

Период свободных колебаний в контуре определяется формулой Томсона:

Ток, протекающий через катушку индуктивности, не совпадает по фазе с напряжением на 1/2 или четверть периода. Напряжение опережает ток на тот же фазовый угол.

Трансформатор – это устройство, предназначенное для преобразования переменного тока. Трансформатор состоит из замкнутого стального сердечника, на котором установлены две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке к вторичной обмотке трансформатора равно отношению количества витков в этих обмотках:

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или буравчика, мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Как образуется ЭДС

Идеальный источник ЭДС – генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна. Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.

Будет интересно Что такое заземление простыми словами

На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки Rн необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора, т.е. необходимо выполнять условие: Rн >> Ri

Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения. Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).

Популярные статьи  Электропроводка в доме своими руками – пошаговая схема разводки и монтаж электрики

Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления. Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).

На электрических схемах источники ЭДС изображаются так: Е — источник постоянной ЭДС, е(t) – источник гармонической (переменной) ЭДС в форме функции времени. Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.

Постоянный ток и ЭДС.

Примечания

  1. Миллер М. А., Пермитин Г. В. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1999. — Т. 5: Стробоскопические приборы — Яркость. — С. 537—538. — 692 с. — 20 000 экз. — ISBN 5-85270-101-7.
  2. Это уравнение Максвелла может быть переписано в эквивалентном виде

    ∮∂S⁡E→⋅dl→=−∫S∂B→∂t⋅ds→{\displaystyle \oint _{\partial S}{\vec {E}}\cdot {\vec {dl}}=-\int _{S}{\frac {\partial {\vec {B}}}{\partial t}}\cdot {\vec {ds}}}

    (здесь просто производная по t внесена под знак интеграла). В таком виде уравнение также может быть включено в систему уравнений Максвелла, причем оговорка о неподвижности контура интегрирования теряет актуальность, так как производная теперь не действует на границу области (на пределы интегрирования), а само интегрирование в любом случае полагается «мгновенным». В принципе, в таком виде это уравнение также могут называть законом Фарадея (чтобы отличить его от других уравнений Максвелла), пусть в таком виде оно и не совпадает прямо с его обычной формулировкой (но эквивалентно ей в своей области применимости).

  3. Такой отказ объясняется тем, что, в отличие от закона для циркуляции электрического поля, выполняющегося всегда, «правило» корректно работает лишь для случаев, когда контур, в котором вычисляется ЭДС, совпадает физически с проводником (то есть совпадает их движение; в противном же случае правило может не работать (самый известный пример — униполярная машина Фарадея; контур, который в этом случае трудно определить, но кажется довольно очевидным, что он не меняется; во всяком случае, довольно затруднительно указать разумное определение для контура, который бы в этом случае менялся), то есть проявляется парадокс, что для «закона природы» недопустимо.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита. Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу. Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Закон электромагнитной индукции

М. Фарадей провел многочисленные опыты, записывая результаты, и из этих опытных таблиц электромагнитной индукции установил, что ток в проводящем контуре возникает только при изменении магнитного поля, пронизывающего этот контур.

Для количественного описания этого явления используется понятие магнитного потока. Если индукция характеризует силу магнитного поля в точке, то магнитный поток характеризует плотность линий магнитной индукции. Магнитный поток через контур площадью S равен произведению модуля индукции B на площадь S и на косинус угла между вектором индукции и нормалью к контуру:

$$Ф=BScosα$$

Рис. 3. Ф=BScosa.

Явление электромагнитной индукции состоит в том, что при изменении за время Δt магнитного потока через контур на величину ΔФ, в нем возникают сторонние силы, создающие разность потенциалов, называемую ЭДС (электродвижущей силой):

$$ε= -{ΔФ\over Δt}$$

Знак минус в данной формуле электромагнитной индукции означает, что возникающая ЭДС, в соответствии с правилом Э.Ленца, направлена так, чтобы создавать ток, противодействующий создавшей его причине.

Законы электролиза

Формула ЭДС индукции

Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.

В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.

На основании этих экспериментов формулируются два закона электролиза:

  1. Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:

m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.

Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;

Закон электромагнитной индукции — формула
Первый закон электролиза

  1. Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).

Для второго закона электролиза используется запись:

К = 1/F x M/z.

Здесь F – постоянная Фарадея, которая определяется зарядом 1 моля электронов:

Популярные статьи  Электрическая цепь и ее элементы

F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.

Запишите другое выражение для второго закона Фарадея:

m1/m2 = К1/К2.

Закон электромагнитной индукции — формула
Второй закон электролиза

Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это – 63,5/2, для серебра – 108/1, значит:

m1/m2 = 63,5/(2 х 108).

Теория электромагнетизма со времен Фарадея продолжала развиваться. В середине 20-го века для закона индукции была применена формулировка в рамках квантовой теории электромагнитных полей – квантовой электродинамики. Сегодня, благодаря большой технической области использования, она представляет собой одну из наиболее точных физических теорий, проверенных посредством экспериментов.

Джеймс Клерк Максвелл математически описал основные законы электричества и магнетизма

Джеймс Клерк Максвелл

Математическая формулировка электромагнитной индукции была разработана немецким физиком и математиком Францем Эрнстом Нейманом (1798-1895) в 1945 году. Эти открытия проложили путь к фундаментальной теоретической композиции, выполненной Джеймсом Клерком Максвеллом (1831-1879), начиная с “силовых линий Фарадея”. Однако работа Максвелла изначально вызывала недоверие у большинства физиков и игнорировалась инженерами.

Только к концу XIX века, после памятного эксперимента с электромагнитными волнами, проведенного Генрихом Герцем в 1887 году, теория Максвелла стала общепринятой и позволила обратиться как к физике, так и к технике.

Взаимодействие магнита с контуром

В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.

Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.

Практическое применение явления электромагнитной индукции

Радиовещание

Закон электромагнитной индукции — формула

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве

электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг

друга, эти поля образуют единое переменное электромагнитное поле – электромагнитную волну.

Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве

со скоростью света -300000 км/с.

Магнитотерапия

Закон электромагнитной индукции — формула

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие

электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой

электрическими и магнитными полями.

Синхрофазотроны

Закон электромагнитной индукции — формула

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц.

В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их

изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой

Лоренца.

Расходомеры – счётчики

Закон электромагнитной индукции — формула

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей

жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая

электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока

Закон электромагнитной индукции — формула

Закон электромагнитной индукции — формула

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора

имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном

поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу “правой

руки”. При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам

генератора подключить нагрузку, то в ней пойдет ток.

Трансформаторы

Закон электромагнитной индукции — формула

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния,

распределении ее между приемниками, а также в различных выпрямительных, усилительных,

сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор

представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются

две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник

электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки – вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле,

созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше

напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить

пониженное напряжение

Предыдущая
РазноеСумеречные выключатели
Следующая
РазноеЧто такое ограничитель перенапряжения и как он работает?

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: