Разность потенциалов

Разность потенциалов (напряжение)

Напряжение является одним из важнейших терминов в электрике, оно описывается как работа, совершаемая электрополем с целью перемещения некоторого заряда из одной точки в другую. По аналогии с гравитацией, заряд при помещении в зону действия поля обладает потенциалом, который можно сравнить с соответствующим видом энергии у тела. Величина электрического потенциала прямо пропорциональна степени полевой напряженности и величине самого заряда.

Встает вопрос: потенциал в чем измеряется? Правильнее будет сказать, в чем обычно измеряется разность потенциалов, так как работники электротехники имеют дело именно с этой величиной в форме напряжения. Для самого потенциала специальной измерительной единицы не существует. В СИ принято измерять разность в вольтах (В). Она равна одному вольту в том случае, если для транспортировки заряда в один кулон из одной точки электрополя в другую потребуется совершить работу в один джоуль.

Важно! Измерить напряжение можно с помощью специального устройства – вольтметра. Стрелочная разновидность прибора, использующаяся на школьных уроках физики, оснащена градуированной шкалой, базирующейся на угле отклонения проволочной рамки, по которой проходит электроток. Помимо него, существуют и приборы с цифровым дисплеем, а также мультиметры, способные работать в нескольких режимах и измеряющие разные величины, описывающие электроцепь

Для измерения важно правильно подключить щупы

Помимо него, существуют и приборы с цифровым дисплеем, а также мультиметры, способные работать в нескольких режимах и измеряющие разные величины, описывающие электроцепь

Для измерения важно правильно подключить щупы

Разность потенциалов

Измерение потенциалов точек электрической цепи и построение потенциальной диаграммы

Фрагмент текста работы

любой ветви схемы можно найти по закону Ома для участка цепи, содержащего ЭДС. Для того чтобы можно было применить закон Ома, необходимо знать потенциалы узлов схемы. Метод расчета электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов.

Допустим, что в схеме n узлов. Так как любая (одна) точка схемы может быть заземлена без изменения токораспределения в схеме, то один из узлов схемы можно мысленно заземлить, т. е. принять потенциал его равным нулю. При этом число неизвестных уменьшается с n до n-1.

Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по первому закону Кирхгофа. Метод узловых потенциалов, как и метод контурных токов, — один из основных расчетных приемов. В том случае, когда число узлов без единицы меньше числа независимых контуров в схеме, данный метод является более экономичным, чем метод контурных токов.

Вывод основных расчетных уравнений проведем применительно к схеме рис. 2, в которой три узла. Если узел 3 мысленно заземлить, т. е. принять =0, то необходимо определить потенциалы только двух узлов: , .

Запишем уравнения по первому закону Кирхгофа для независимых узлов, причем токи, направленные к узлу берем со знаком минус, а от узла – со знаком плюс.

Для первого узла ,

Для второго узла .

Рис. 2. Схема для расчета по методу узловых потенциалов

Запишем токи по закону Ома:

Подставим токи в уравнения по первому закону Кирхгофа:

G11— сумма проводимостей ветвей, сходящихся в первом узле,

G12— сумма проводимостей ветвей, соединяющих первый и второй узлы, взятая со знаком минус,

G21— сумма проводимостей ветвей, соединяющих первый и второй узлы, взятая со знаком минус,

G11— сумма проводимостей ветвей, сходящихся во втором узле,

I11— узловой ток первого узла,

I22 — узловой ток второго узла.

Запишем уравнения в матричной форме:

Решим эти уравнения относительно искомых потенциалов и выразим токи ветвей, используя закон Ома.

После нахождения токов ветвей любым методом всегда делается проверка по первому закону Кирхгофа.

Под потенциальной диаграммой понимают график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура. По оси абсцисс на нем откладывают сопротивления вдоль контура, начиная с какой-либо произвольной точки, по оси ординат – потенциалы. Каждой точке участка цепи или замкнутого контура соответствует своя точка на потенциальной диаграмме. Построим потенциальную диаграмму для контура на рис.3. Пусть R1=10 Ом, R2=5 Ом, R3=15 Ом, E1=20 В, E2=10 В, I=1A.

Намагничивание ферромагнетиков

В зависимости от магнитных свойств, то есть способности намагничиваться под действием внешнего магнитного поля, все вещества делятся на несколько классов. Которые характеризуются разной величиной относительной магнитной проницаемости μr и магнитной восприимчивости χ. Большинство веществ являются диамагнетиками (χ = -10-8 … -10-7 и μr < 1) и парамагнетиками (χ = 10-7 … 10-6 и   μr > 1), несколько реже встречаются ферромагнетики (χ = 103 … 105 и   μr >> 1). Кроме данных классов магнетиков существует ещё несколько классов магнетиков: антиферромагнетики, ферримагнетики и другие, однако их свойства проявляются только при определённых условиях.

Особый интерес в радиоэлектронике ферромагнитные вещества. Основным отличием данного класса веществ является нелинейная зависимость намагничивания, в отличие от пара- и диамагнетиков, имеющих линейную зависимость намагничивания J от напряженности Н магнитного поля.

Разность потенциалов
Зависимость намагничивания J ферромагнетика от напряженности Н магнитного поля.

На данном графике показана основная кривая намагничивания ферромагнетика. Изначально намагниченность  J, в отсутствие магнитного поля (Н = 0), равна нулю. По мере возрастания напряженности намагничивание ферромагнетика проходит довольно интенсивно, вследствие того что его магнитная восприимчивость и проницаемость очень велика. Однако по достижении напряженности магнитного поля порядка H ≈ 100 А/м увеличение намагниченности прекращается, так как достигается точка насыщения JНАС. Данное явление называется магнитным насыщением. В данном режиме магнитная проницаемость ферромагнетиков сильно падает и при дальнейшем увеличении напряженности магнитного поля стремится к единице.

Популярные статьи  Допускается ли проход кабеля через перегородку в трубе из пвх?

Напряжённость электрополя

В электрическом поле, так же как и в гравитационном, возникает понятие напряжённости. Это говорит о том, какая сила будет действовать, а известно, что эта сила зависит от источника и от расстояния. Именно интенсивность — характеристика этого поля, которое можно зарядить. По определению, напряжённость электрополя — это отношение силы, действующей на его значение.

Разность потенциалов

Например, есть данные центрального поля, создаваемые зарядом Q. Следует разместить на расстоянии R1 пробный заряд q. Делается работа по перемещению этого испытательного заряда на расстояние R2 от источника поля.

Для того чтобы система заряда двигалась с одинаковой скоростью, нужно постоянно действовать на него с усилием, уравновешивающем величину Куломба. Но вместе с изменением расстояния от источника эта сила меняется обратно пропорционально квадрату расстояния. Использовать нужно среднюю величину, действующую на пробный заряд.

Чтобы определить, является ли работа положительной или отрицательной, нужно подумать, каков угол между вектором приложенного усилия и вектором перемещения. Если пробный заряд притягивается источником поля, и работа, которую выполняют, перемещает этот заряд ближе к источнику, тогда нужно сбалансировать притяжение.

Одним словом, прилагают усилие, которое создаёт с вектором смещение на угол 180°. Если cos (α)= -1, то работа отрицательная. Но если источник имеет взаимодействие с грузом так, чтобы уравновесить силу, параллельную цепи смещения, так что условие α=0°, т. е. cos (α) = 1 — работа положительная.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом

данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Разность потенциалов

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Разность потенциалов

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Физическая связь

Формула напряженности имеет вид E=U/delta (d). Это обозначает скорость изменения параметра вдоль направления d. Из указанного соотношения можно отметить:

Разность потенциалов

  • Вектор напряженности всегда направляется на уменьшение электрического и динамического потенциалов.
  • Электрическое поле появляется в те моменты, когда можно связать разность потенциалов.
  • Напряженность поля равняется соотношению вольта к метру, если между 2 точками на расстоянии 1 м друг от друга имеется разность в 1 В.

Для равномерно распределенного показателя важно наличие эквипотенциальных поверхностей. Их свойства заключаются в том, что работа при перемещении заряда вдоль такой поверхности не происходит, а вектор напряженности перпендикулярно расположен к ЭПП в любой точке.

§ 47. Разность потенциалов. Потенциал

Для изучения электростатического поля с энергетической точки зрения в него, как и в случае рассмотрения напряженности, вводится положительно заряженное точечное тело — пробный заряд. Допустим, что однородное электрическое поле, перемещая из точки 1 в точку 2 внесенное в него тело зарядом q и на пути l, совершает работу A = qEl (рис. 62, а). Если величина внесенного заряда будет 2q, 3q, …, nq, то поле совершит соответственно работу: 2А, 3А, …, nА. Эти работы различны по величине, поэтому не могут служить характеристикой электрического поля. Если взять соответственно отношения величин данных работ к величинам заряда тела, то окажется, что эти отношения для двух точек (1 и 2) есть величины постоянные:

Рис. 62. К понятию разности потенциалов и потенциала

Если подобным образом исследовать электрическое поле между двумя любыми его точками, то придем к заключению, что для любых двух точек поля отношение величины работы к величине заряда тела, перемещаемого полем между точками, есть величина постоянная, но оно в зависимости от расстояния между точками различно. Величина, измеряемая этим Отношением, называется разностью потенциалов между двумя точками электрического поля (обозначается φ2 — φ1) или напряжением U между точками поля. Скалярная величина, являющаяся энергетической характеристикой электрического поля и измеряемая работой, совершаемой им при перемещении точечного тела, заряд которого равен +1, из одной точки поля в другую, называется разностью потенциалов между двумя точками поля, или напряжением между этими точками. Из определения разность потенциалов напряжение U = φ2 — φ1 = Δφ.

Вокруг каждого заряженного тела имеется электрическое поле. С увеличением расстояния от тела до любой точки поля сила, с которой оно действует на внесенный в него заряд, уменьшается (закон Кулона) и в какой-то точке пространства практически становится равной нулю. Место, где не обнаруживается действия электрического поля данного заряженного тела, называется бесконечно удаленным от него.

Популярные статьи  Электрооборудование с разъемным подключением: что это такое, определение, примеры

Если шарик электроскопа помещать в разные точки электрического поля заряженного шарика электрофорной машины, то оно заряжает электроскоп. При заземлении шарика электроскопа электрическое поле машины совсем не действует на электроскоп. Разность потенциалов между произвольной точкой электрического поля и точкой, расположенной на поверхности Земли, называется потенциалом данной точки поля относительно Земли. Он измеряется работой, для вычисления которой надо знать начальную и конечную точки пути. За одну из этих точек принята точка на поверхности Земли, и относительно ее вычисляется работа перемещения заряда, а следовательно, и потенциал другой точки.

Если электрическое поле образовано положительно заряженным телом (рис. 62, б), то оно само перемещает до поверхности Земли внесенное в него положительно заряженное тело С. Потенциалы точек такого поля считают положительными. Когда электрическое поле образовано отрицательно заряженным телом (рис. 62, в), для перемещения положительно заряженного тела С до поверхности Земли нужна посторонняя сила Fпост. Потенциал точек такого поля считается отрицательным.

Если известны потенциалы точек поля φ1 и φ2, то, исходя из формулы разности потенциалов, можно вычислить работу перемещения заряженного тела из одной точки поля в другую: A = q(φ2 — φ1), или A = qU. Поэтому разность потенциалов и является энергетической характеристикой электрического поля. По этим формулам подсчитывается работа перемещения заряда в однородном и неоднородном электрических полях.

Установим единицу измерения напряжения (разности потенциалов) в системе СИ. Для этого в формулу напряжения подставим значение А = 1 дж и q = 1 к:

За единицу напряжения — вольт — принята разность потенциалов между двумя точками электрического поля, при перемещении между которыми точечного тела с зарядом в 1 к поле совершает работу в 1 дж.

Заряд вокруг объекта

Конечно, можно говорить о поле, если есть какой-либо его источник. Каждое электрическое тело создаёт вокруг себя градиент потенциала электрического поля

По сравнению с гравитационными полями, есть важное отличие:

  • Гравитационные силы являются силами притяжения и могут измеряться.
  • Силы электричества могут быть как силами притяжения, так и отталкивания.

Разность потенциалов

Известно, что линии поля относятся к векторам силы, действующим на тело в этой точке. Учёные сошлись во мнении, что стрелки линии поля будут выставлять обратный вектор силы, действующей на отрицательный заряд. Следовательно, силовые линии «выходят» из зарядов положительных и «бегут» к отрицательным энергетическим зарядам.

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение. Силу F воздействия на частицу принято называть силой Лоренца

Силу F воздействия на частицу принято называть силой Лоренца.

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Заряд вокруг объекта

Конечно, можно говорить о поле, если есть какой-либо его источник. Каждое электрическое тело создаёт вокруг себя градиент потенциала электрического поля

По сравнению с гравитационными полями, есть важное отличие:

  • Гравитационные силы являются силами притяжения и могут измеряться.
  • Силы электричества могут быть как силами притяжения, так и отталкивания.

Разность потенциалов

Известно, что линии поля относятся к векторам силы, действующим на тело в этой точке. Учёные сошлись во мнении, что стрелки линии поля будут выставлять обратный вектор силы, действующей на отрицательный заряд. Следовательно, силовые линии «выходят» из зарядов положительных и «бегут» к отрицательным энергетическим зарядам.

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

Популярные статьи  Паяльная станция своими руками

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Примеры формул для вычисления напряжения

Электрическое поле — что это такое, понятие в физике

Измерить напряжение можно, воспользовавшись такой формулой:

U=A/q (U, A и q – величина напряжения, переносящая работа электрополя и заряд, соответственно).

Выразив работу (A=q*U), можно понять, что, чем больше напряженность, тем большую работу потребуется совершить электрополю, чтобы перенести Q

Такие преобразования помогают усвоить, почему важно, чтобы источник питания был мощным. Чем больше потенциальная разница между его клеммами, тем больший объем работы он способен обеспечивать

Чтобы определить напряжение на участке электрической цепи, используется следующее выражение:

U=I*R.

Здесь I – сила протекающего по проводнику электротока, R – сопротивление фрагмента цепи. Для последовательно и параллельно соединенных проводниковых элементов также существуют свои законы, согласно которым рассчитываются напряжение, токовая сила и сопротивление для каждой из веток.

Как связана индукция и напряженность магнитного поля?

Магнетиком называется вещество, которое под действием магнитного поля способно намагничиваться (или как говорят физики приобретать магнитный момент). Магнетиками являются практически все вещества. Намагничивание веществ объясняется тем, что в веществах присутствуют свои собственные микроскопические магнитные поля, которые создаются вращением электронов по своим орбитам. Когда внешнее магнитное поле отсутствует, то микроскопические поля расположены произвольным образом, а под воздействием внешнего магнитного поля соответствующим образом ориентируются.

Для характеристики намагничивания различных веществ используют так называемый вектор намагничивания J.

Таким образом, под действием внешнего магнитного поля с магнитной индукцией В, магнетик намагничивается и создает свое магнитное поле с магнитной индукцией В’. В итоге общая индукция В будет состоять из двух слагаемых

Тут возникает проблема вычисления магнитной индукции намагниченного вещества В’, для решения которой необходимо считать электронные микротоки всего вещества, что практически нереально.

Альтернативой данного решения есть ввод вспомогательных параметров, а именно напряженность магнитного поля Н и магнитная восприимчивость χ. Напряженность связывает магнитную индукцию В и намагничивание вещества J следующим выражением

где В – магнитная индукция,

μ – магнитная постоянная, μ = 4π*10-7 Гн/м.

В то же время вектор намагничивания J связан с напряженность магнитного поля В параметром, характеризующим магнитные свойства вещества и называемым магнитной восприимчивостью χ

где J – вектор намагничивания вещества,

μr – относительная магнитная проницаемость вещества.

Однако наиболее часто для характеристики магнитных свойств веществ используют относительную магнитную проницаемость μr.

Таким образом, связь между напряженностью и магнитной индукцией будет иметь следующий вид

где μ – магнитная постоянная, μ = 4π*10-7 Гн/м,

μr – относительная магнитная проницаемость вещества.

Так как намагничивание вакуума равна нулю (J = 0), то напряженность магнитного поля в вакууме будет равна

Отсюда можно вывести выражения напряженности для магнитного поля, создаваемого прямым проводом с током:

где I – ток протекающий по проводнику,

b – расстояние от центра провода до точки, в которой считается напряженность магнитного поля.

Как видно из данного выражения единицей измерения напряженности является ампер на метр (А/м) или эрстед (Э)

Таким образом, магнитная индукция В и напряженность Н являются основными характеристиками магнитного поля, а магнитная проницаемость μr – магнитной характеристикой вещества.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: