Изоляционные материалы

Содержание

Гидроизоляционные материалы

Классификация гидроизоляции по группам.

Влагостойкие материалы чаще всего применяются для защиты построек от неблагоприятного воздействия атмосферных осадков, природного влияния и различных химикатов, разъедающих структуру стройматериалов.

Влагоизоляционные структуры подразделяются на множество видов и подтипов, которые принято определять по целям применения:

  • направленные на фильтрацию;
  • обеспечивающие герметизацию;
  • предотвращающие коррозию;

по разновидностям стройматериалов:

  • асфальтные смеси, краски, лакировочные растворы, эмульсии, асфальты низкой и высокой температуры;
  • смеси на минеральной основе (цемент, сыпучие растворы);
  • смеси на основе пластика в малярных работах (покраска, отделка, оклеивание, шпаклевка, лакировка, стяжка);
  • раствор на основе металла (латунные, медные, свинцовые, алюминиевые материалы).

Помимо вышеперечисленных разновидностей, влагостойкие изоляционные материалы разделяются на 2 категории: поверхностные и проникающие. К первой категории относятся клейкие и покрывающие полимерные смеси, ко второй — на основе минерального сырья.

Схема пароизоляции кровли.

Основным минусом поверхностных гидроизоляционных материалов является высокая вероятность отслоения от поверхности, на которую они были нанесены. Это приводит к дальнейшей потере защитных свойств. Вместе с тем для работы с поверхностными смесями необходимо выполнять тщательную обработку наружности и следовать правилам нанесения материала.

Самым оптимальным вариантом является гидроизоляция с проникающим воздействием. В ее составе содержатся такие минеральные добавки, как кварцевый песок, цемент и природные химикаты. Они обеспечивают качественную и долговечную защиту поверхности от наружного воздействия.

Влагостойкость покрытия достигается путем проникновения гидроизоляционного материала в микротрещины, поры и свободные участки поверхности с дальнейшим укреплением их структуры. Такой эффект получается благодаря вступлению в реакцию природных химикатов, цемента и влаги. Проникающий материал сливается со структурой обрабатываемой поверхности при контакте с водой. Этот процесс позволяет обеспечить поверхности долговечность, не препятствуя ее паровой проницаемости.

Стандарты и правила, регламентирующие проведение работ

Стандарты расценок

Прежде всего, для работ данного вида, существует такой термин, как енир гидроизоляция, что означает – единые нормы и расценки на работы. Специально разработанные нормы содержат довольно много пунктов, в которых подробно расписаны все необходимые стандарты и правила при проведении гидроизоляционных работ.

Также в них расписаны расценки на проведение работ определенного типа с соответствующими технологиями

Стоит обратить особое внимание на них тем, кто занимается профессиональными строительными работами

Соблюдение техники безопасности, а также применение материалов, соответствующих требованиям стандартов, обязательно необходимо и четко предписано законом.

Строительные нормы по гидроизоляции

Правильная защита фундамента по СНиП

Наравне с предыдущими правилами, существует еще гидроизоляция: СНиП, что означает – строительные нормы и правила. Например, СНиП №№ 04.-01-87, 3.04.03-85, 3.06.03-85. Применение любого материала должно сопровождаться строгим соблюдением всех этих норм.

Более того, материал должен иметь соответствующую документацию и сертификат, и полностью им соответствовать.

Если производится гидроизоляция в промышленных масштабах, то хранение, транспортировка, а также применение материалов должно строго соответствовать предписанным требованиям и нормативам.

Все документы СНиП на гидроизоляцию могут быть проверены имеющими на это право организациями или работниками. Не только окружающая среда, но и граждане не должны нести ущерба любого вида при проведении строительных работ.

ГОСТ на изоляционные материалы

Помимо двух вышеперечисленных пунктов, существует еще ГОСТ гидроизоляция, что расшифровывается как — государственный стандарт. Например, ГОСТ 3054797 «Рулонные гидроизоляционные материалы».

Дело в том, что многие используемые материалы при неправильном хранении или применении могут нанести вред окружающим. Несоблюдение стандартных правил может привести к значительным проблемам. Нарушение технологии приведет не только к тому, что гидроизоляция не будет нести предназначенной пользы, но и навредит.

Материалы и компоненты, которые используются в современных технологиях, работают на пользу только при тщательном соблюдении приложенных к ним стандартов. Поэтому, гидроизоляция ГОСТ – это важный документ, который необходимо строго соблюдать.

Где применяется электроизоляция

Без обеспечения надежной изоляции проводников и кабелей невозможно функционирование бытовых приборов и промышленного оборудования. Всюду, где используется электрический ток, необходимы и диэлектрики. Компьютеры, телевизоры, бытовые приборы подключаются к сети с помощью изолированных кабелей. Провода для подведения электричества к домам, учреждениям и промышленным объектам также должны быть экранированы слоем диэлектрического материала.

Она повышает механическую прочность проводов и защищает их от агрессивного воздействия внешних факторов.

Необходимость использования изоляции в быту может возникнуть в следующих случаях:

  • восстановление целостности покрытия токопроводящих жил;
  • монтаж новой проводки в квартире, доме или хозяйственных помещениях;

Повреждения слоя диэлектрика могут возникать вследствие:

  • перетирания в процессе использования;
  • порчи домашними животными;
  • скачков напряжения;
  • неправильной эксплуатации;
  • использования при монтаже некачественных или неподходящих изоляторов.

Разновидности изоляционных материалов и сфера их применения

В зависимости от планируемых условий эксплуатации и типа соединения проводников могут использоваться различные виды изоляции. Рассмотрим наиболее популярные варианты.

Изоляционная лента

Изолента является самым доступным и популярным способом защиты токопроводящих жил. Сфера ее применения напрямую зависит от материала изготовления.

Поливинилхлорид

Лента выпускается с шириной от 10 до 20 мм. Адгезия с защищаемой поверхностью обеспечивается специальным клеящим составом, который нанесен на внутреннюю поверхность ленты. Производители выпускают изделия в различных цветовых гаммах. К положительным основным свойствам ПВХ изоленты относятся:

  • прочность;
  • адгезия со многими типами поверхностей;
  • способность выдерживания значительных температур — до 120 градусов Цельсия;
  • выдерживание повышенного значения напряжения;
  • эластичность;
  • высокий уровень пожарной безопасности;
  • противодействие внешним факторам: влага, щелочь, кислота.

Изоляционные материалы
Изоляция провода ПВХ лентой Из недостатков выделяется потеря полезных свойств при использовании в отрицательных температурах.

Изоляционная лента ПВХ получила широкое применение в электротехнической отрасли, а также в быту. Изолента для проводки с уровнем напряжения до 1000 Вольт может прослужить длительный период времени.

Помимо указанных случаев, материал активно используется для ремонта трубопроводов, бытовой техники и упаковки товаров.

Изоляционные материалы
Виды изоляционной ленты из поливинилхлорида

Хлопчатобумажная

Основу изделия составляет хлопчатобумажный материал с добавлением резины, на внутреннюю часть которого также наносится клеящий раствор. Некоторые производители в качестве базового материала применяют стекловолокно. Выпуск лент осуществляется с шириной от 15 до 50 мм. Из положительных характеристик выделяются:

  • высокая прочность;
  • повышенная износостойкость;
  • термическая устойчивость;
  • низкая стоимость.

К отрицательным моментам хлопчатобумажного изоляционного материала относят:

  • вероятность воспламенения из-за перегрева;
  • впитывание жидкости.

Изоляционные материалы
Тканевая изолента TESA

Изоляционная защита электрооборудования

Изоляционные материалы обеспечивают защиту окружающих людей и животных от электроударов. Условие одно: нужно правильно подобрать расходный диэлектрик, его форму, толщину, параметры рабочего напряжения (оно может быть разным, как и конструкция прибора).

Популярные статьи  Светодиодное освещение в квартире: фото идеи, типы светильников, нюансы

Кроме того, существенное влияние на качество изоляторов могут оказывать производственные или бытовые условия эксплуатации сложного электротехнического устройства. Качество изоляции, толщина и степень электросопротивления должны соответствовать фактическому влиянию окружающей среды и стандартным условиям эксплуатирования.

Изоляционные материалы
Для проверки изоляционных свойств по кабелю подают испытательное напряжение, а затем с помощью мультиметра или тестера снимают показания сопротивления изоляции электроустройства

Информация о том, как проверяют напряжение в электрической розетке, содержится в следующей статье, с которой мы рекомендуем ознакомиться.

В состав электрической изоляции может входить как определенной толщины слой диэлектрика, так и конструкционная форма (корпус), выполненная из диэлектрического материала. Диэлектриком покрывается вся поверхность токоведущих элементов оборудования или же только те токоведущие элементы, которые изолированы от других частей конструкции.

Подготовка к нанесению изоляции

Чтобы заизолировать токопроводящие жилы, необходимо предварительно провести ряд подготовительных операций:

  • отключить подачу электричества;
  • удалить грязь, окислы и остатки старой изоляции;
  • подготовить инструмент для проведения работ.

Чтобы удалить остатки старого диэлектрика, можно воспользоваться паяльником. Для этого нужно прогреть нужный участок до начала термической деформации защитной оболочки. Затем остатки слоя диэлектрика счищаются вручную. При этом необходимо использовать перчатки.

Изоляционные материалы

В некоторых случаях можно воспользоваться острым ножом. Лезвием аккуратно проводят вдоль жил, разрезая защитную оболочку кабеля. Затем делают продольное круговое сечение и удаляют фрагмент изоляции.

Виды изоляции проводов при электромонтажных работах

Хотя с каждым днем появляется все больше беспроводных устройств, основным средством передачи электрического тока по-прежнему остаются провода. При производстве проводов и кабелей используются различные виды изоляции. Каждый вид изоляции проводов определяет область применения тех или иных кабельных изделий. В процессе монтажа проводов или кабелей появляется необходимость в изоляции мест их соединения или подключения к электроприборам. Каким же образом это можно сделать?

Ранее для изоляции кабелей применяли бумагу, но сейчас, при огромном количестве современных материалов ее используют крайне редко. Бумагу наматывали несколькими слоями, пропитывая маслом и канифолью. Это помогало противостоять влиянию влаги. В производственных условиях делают надежную изоляцию из фторопласта. Ленты фторопласта наматывают на провода и запекают. Образуется оболочка, которая не боится не только химического или температурного, но и механического воздействия.

ПВХ изоляция

ПВХ (поливинилхлорид) также называют виниловая изоляция. Поливинилхлорид устойчив к действию щелочей и кислот, не проводит ток, не растворяется в воде, поэтому находит широкое применение при изготовлении изоляционных материалов. Применяется для изготовления изоляции проводов и кабелей. Так же изготавливают ПВХ изоленту, для изоляции соединения проводов. Одно из преимуществ ПВХ изоляции – ее дешевизна. Полимерная изоляция довольно эластична и устойчива к перепадам температур, не горит на воздухе. При производстве ПВХ материалов могут добавлять пластификаторы, они несколько ухудшают изоляционные свойства и стойкость к химикатам, но увеличивают эластичность и устойчивость к воздействию ультрафиолетовых лучей.

Если в соединительном кабеле используется виниловая изоляция, покрывающая провода, то кабель обозначается аббревиатурой ПВС. Он может состоять из 2-5 алюминиевых или медных жил. Оболочка бывает виниловая или резиновая. Срок службы ПВС кабелей превышает 6 лет. В течение всего этого времени они не требуют замены. Они устойчивы к коррозии и плесени, выдерживают морозы до -40° и жару до +40°. Их рабочее сопротивление составляет на 1 км около 270 Ом.

Кабели с ПВХ оболочкой и алюминиевыми жилами применяют в городских электрических сетях, для подачи электричества на производстве и в жилых многоквартирных домах. ПВС кабели с медными жилами получили распространения при подключении к сети практически всех бытовых приборов и другой техники малой мощности, их используют для электропроводки в частных домах и квартирах.

Особенности

Что нужно отметить:

  • Хрупкость – это, скорее, минус, чем плюс. Чтобы снизить опасность разлета, материал прошивают. В процессе работы обязательно требуются средства личной защиты.
  • Теплопроводность низкая, но по сравнению с другими утеплителями ненамного.
  • Стоимость небольшая, именно по этой причине данный материал на рынке остается востребованной продукцией.

Мастера считают, что материал легко транспортировать, потому что он идет в компактных упаковках. Да и вести работы с ним не составит труда. За отсутствием упругости при вертикальном монтаже материал выпадает, но и к этому уже приспособились производители, создавая конструкции чуть меньше шага. Принести вред здоровью человека такой материал может, если не соблюдать меры безопасности в процессе работы. А дальше он зашивается и полностью безопасен.

Этот утеплитель негорючий и применять его лучше в работе на полу и перекрытиях. Если есть опыт работы, то и стены просто отделать. Основной минус – это появление пыли при нарезке. Хотя если ничего не нарушать, то легко преодолеть и эту проблему.

Устройство силовых кабелей

Любой силовой кабель, вне зависимости от сферы применения и его параметров, состоит из следующих основных элементов:

Токопроводящие проводники – так называемые, жилы.

Они несут основную функциональную нагрузку – пропускают через себя электрический ток. Форма профиля может быть различной, все зависит от типа кабеля и его параметров.

Изоляционные материалы

Сами жилы изготавливают их меди и алюминия. По своей цене силовой алюминиевый кабель дешевле, но медный выдерживает большие нагрузки при той же площади поперечного сечения жилы.

Изоляционные материалы

Изоляция между отдельными жилами кабеля. Главной ее задачей является защита от электрического пробоя внутри кабеля.

Изоляционные материалы

Внешней защитной оболочки объединяющей кабель в единую конструкцию и защищающую его от воздействия неблагоприятных факторов внешней среды: природных, механических и иных воздействия.

Изоляционные материалы

Экран. Конструктивно может быть выполнен как элемент внешней оболочки.

Главная задача – защита внешней среды от электромагнитного поля, возникающего при прохождении электрического тока по кабелю.

Изоляционные материалы

Защитная броня. Бронированные кабели используются в случае повышенного риска механических повреждений.

Между самой броней и кабелем имеется специальная демпферная подушка, ее цель — ограничение воздействия на кабель при деформации брони внешними факторами.

Изоляционные материалы

Природные и синтетические диэлектрики

Изоляционные материалы, а иначе, диэлектрики, по своему происхождению подразделяются на естественные (слюда, дерево, латекс) и синтетические:

  • пленочные и ленточные изоляторы на основе полимеров;
  • электроизоляционные лаки, эмали – растворы плёнкообразующих веществ, изготовляемые на основе органических растворителей;
  • изоляционные компаунды, в жидком состоянии твердеющие сразу после нанесения на токопроводящие элементы. Данные вещества не содержат в своем составе растворителей, по своему назначению подразделяются на пропиточные (обработка обмоток электроприборов) и заливочные составы, которыми заливают кабельные муфты и полости приборов и электроагрегатов с целью герметизации;
  • листовые и рулонные изоляционные материалы, которые состоят из непропитанных волокон как органического, так и неорганического происхождения. Это могут быть бумага, картон, фибра или ткань. Их изготавливают древесины, натурального шелка или хлопка;
  • лакоткани с изоляционными свойствами – особые пластичные материалы на тканевой основе, пропитанные электроизоляционным составом, который после затвердевания формирует пленку-изолятор.
Популярные статьи  Токовая защита линий

Синтетические диэлектрики имеют важные для надежной работы приборов электрические и физико-химические характеристики, заданные конкретной технологией их производства.

Они широко используются в современной электротехнике и электронной промышленности для выпуска на рынок следующих видов изделий:

  • диэлектрические оболочки кабельной и проводниковой продукции;
  • каркасы электротехнических изделий, таких как катушки индуктивности, корпуса, стойки, панели и т.п.;
  • элементы электроустановочной арматуры – распределительные короба, розетки, патроны, кабельные разъемы, переключатели и др.

Также производятся радиоэлектронные печатные платы, включая панели, используемые под расшивку проводников.

Твердые диэлектрики

Изоляционные материалы

Традиционно под изоляторами данного типа понимаются такие материалы, как стекло, кварц, фарфор, пластики и резина. Их происхождение может быть натуральным и синтетическим. В тонких слоях изоляторов могут быть повышенные показатели удельного сопротивления и напряжения пробоя – эти значения зависят от диэлектрической проницаемости и электрической прочности структуры. Увеличение разности потенциалов по отношению к твердому или жидкому диэлектрику будет повышать ток, проходящий целевой объект. В итоге это явление способствует формированию вблизи катода положительного пространственного заряда на фоне отрыва электронов. Электрический пробой можно будет рассматривать как результат искажения заряженного поля в структуре самого изолятора. Твердотельные электроизоляционные материалы подвергаются поляризации, поэтому их диэлектрическая постоянная превышает единицу. Также в момент приложения переменных электрических полей поляризация способствует образованию диэлектрических потерь. В этом контексте стоит выделить материалы, которые даже в высокочастотных полях имеют минимальные диэлектрические потери. К таким можно отнести полиэтилен и кварц.

Непропитанные волокнистые и изоляционные материалы

Электрокартон

Выпускается в нескольких видах. Электрокартон для работы в воздушной среде (марки ЭВТ и ЭВ) толщина (0,1мм—3 мм). Электрокартон для работы в масле (марки ЭМТ и ЭМЦ), толщина (1мм—3 мм). Выпускается как в листах (листовой), так и в рулонах (рольный).
Если электрокартон выпущен в непропитанном виде, то является невлагостойким материалом, и хранят его надо в сухом помещении. Диэлектрическая прочность сухого электрокартона марки ЭВ, который имеет влажность около 8%, равна 8—11 кВ/мм, а марки ЭМТ уже 20—30 кВ/мм.

Изоляционные материалы

Изоляционные бумаги

Изготовляется из измельченной древесины хвойных пород и обрабатывается щелочью.
Имеется несколько видов изоляционной бумаги. Это телефонная бумага, кабельная бумага и конденсаторная бумага.
Телефонная бумага. Марка бумаги КТ-05 выпускается толщиной 0,04 — 0,05 мм. Кабельная бумага марки К-120. Ее толщина 0,12 ми она пропитана трансформаторным маслом, имеющим хорошие диэлектрические свойства. Такими же свойствами обладает конденсаторная бумага, только толщина ее гораздо меньше.

Изоляционные материалы

Фибра

Изготовляется из бумаги и обрабатывается раствором хлористого цинка. Имеет малую механическую прочность по этому хорошо обрабатывается. Диэлектрическая прочность фибры составляет 5 – 11 кВ/мм. Не стойкая к щелочам и кислотам. Выпускается в виде листов и имеет толщину 0,6— 12 мм. Так же выпускается в виде трубок и круглых стержней. Из фибры делают каркасы катушек, прокладки.

Изоляционные материалы

Летероид

Электроизоляционный материал, который представляет собой одну из разновидностей фибры, имеющей малую толщину. Летероид выпускается в виде рулонов и листов и имеет толщину 0,1—0,5 мм.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Как соединить провода наушников

Иногда у исправных наушников обламывается кабель возле штекера, но есть штекер от неисправных наушников. Бывают также и другие ситуации, в которых необходимо соединение проводов в наушниках.

Для этого нужно:

  1. обрезать обломанный штекер или неровно оборванный кабель;
  2. зачистить внешнюю изоляцию на 15–20 мм;
  3. определить, какой из внутренних проводов является общим и проверить целостность всех проводников;
  4. обрезать внутренние проводки по принципу: один не трогать, общий на 5 мм и второй на 10 мм. Это делается для уменьшения толщины соединения. Общих проводников может быть два — на каждый наушник свой. В этом случае они скручиваются вместе. Иногда в качестве общего проводника используется экран;
  5. зачистить концы проводов. Если в качестве изоляции используется лак, то он сгорит в процессе лужения;
  6. залудить концы на длину 5 мм;
  7. на провод надеть кусочек термоусадочной трубки длиной на 30 мм больше, чем ожидаемая длина соединения;
  8. на длинные концы надеть кусочки более тонкой термоусадочной трубки длиной 10 мм, на средний (общий) не одевать;
  9. скрутить проводки (длинные с короткими, а средний со средним);
  10. пропаять скрутки;
  11. отогнуть пропаянные скрутки наружу, к незащищенным краям, надвинуть на них кусочки тонкой термоусадочной трубки и прогреть её феном или зажигалкой;
  12. надвинуть на место соединения термоусадочную трубку большего диаметра и прогреть.

Если всё было сделано аккуратно, а цвет трубки подобрать по цвету кабеля, то соединение незаметно и наушники будут работать не хуже новых.

Пеноплекс

У него могут быть и другие названия – это полистирол, пенополистирол, но от этого его качества не меняются. Иногда его сравнивают с пенопластом, хотя по качествам он выше. Но у него более мелкоячеистая структура, а значит, и преимуществ больше. Чтобы понимать, о чем идет речь, лучше ознакомиться с положительными сторонами изоляционного материала:

  • Надежность. При высоких нагрузках не происходит изменение формы, но при укладке материал легко разрезается острым ножом.
  • Экологически безопасен. На нем не формируется грибок, плесень и грызуны. Материал дополнительно не обрабатывают. Но некоторые химические составы в виде жидкости способны поменять его форму, так что не стоит при утеплении их держать вблизи.
  • Пар через него проходит плохо, поэтому при монтаже нужно верно соблюдать технологию, чтобы не создать парникового эффекта.
  • Если условия при монтаже соблюдены, то производитель заявляет о 50-летнем сроке эксплуатации.
  • Коэффициент теплопроводности самый оптимальный. Это позволит защитить дом от выхода тепла максимально надежно.

Изоляционные материалы

В продаже можно найти пеноплекс с дополнительной аббревиатурой. Первый – это пеноплекс 31. Он подходит для цоколей, внутренних и внешних стен.

Популярные статьи  Как установить розетку в бетонную стену

Следующий фундамент – пеноплекс 35. Помимо этого, он эффективен для цоколей и отмосток. Есть еще один кровельный изоляционный материал – его плотность большая, до 30 кг/м3. Вариантов хватает, поэтому нужно принимать решение о выборе на стадии планирования. За свои положительные качества, этот материал не менее популярен.

Характеристики электроизоляторов

Ко всем без исключения электроизоляторам предъявляются общие требования.

Электрическая прочность

Способы огнезащиты электрических коммуникаций

Главная задача диэлектрика – обеспечить требуемый уровень значения величины электрической прочности на пробой. Данная величина находится в прямой зависимости от того, насколько толстая фарфоровая стенка изолятора. Нарушение прочности происходит при пробое твердого диэлектрика или в результате разряда по поверхности изолятора. Прочность характеризуется напряжением промышленной частоты, которое способен выдержать изолятор при сухой и мокрой поверхности, а также импульсным напряжением при испытании. Эту величину проверяют специальным прибором – мегаомметром.

Удельное сопротивление

Изоляционный материал пропускает небольшую часть электрического тока. Эта величина является несоизмеримо малой, в сравнении с теми токами, которые протекают постоянно по жилам. Электрический ток может идти через два пути: сквозь сам изоляционный материал или по его поверхности. Удельным сопротивлением называется величина сопротивления единицы объема материала. Она равна отношению произведений величин сопротивлений тока, идущего по изолятору и сквозь него, к их же сумме.

В качестве единицы измерения данной величины взято значение сопротивления изоляционного материала, выполненного в форме куба с гранью 1 см, где направление тока совпадает с вектором направления двух наружных противоположных граней. Величина удельного сопротивления зависит от агрегатного состояния материала и других важных величин.

Диэлектрическая проницаемость

После помещения изолятора в электромагнитное поле происходит изменение направления в пространстве частиц с плюсовыми зарядами: они выстраиваются по силовым линиям электромагнитного поля. Электронные оболочки меняют свою ориентацию в противоположную сторону. Молекулы поляризуются. При поляризации диэлектриков происходит образование собственного поля у молекул, которое действует в сторону, противоположную направлению общего поля. Эта способность определяется диэлектрической проницаемостью.

Важно! Диэлектрическая проницаемость характеризует степень поляризации диэлектрика. Она оказывает влияние на емкость таких элементов, как конденсаторы. При их изготовлении следует применять изоляцию с большой величиной диэлектрической проницаемости

Измерение величины производят в фарадах на метр погонный (Ф/м). Единица измерения получила свое название в честь великого английского ученого Майкла Фарадея, внесшего весомый вклад в науку в области электромагнетизма

При их изготовлении следует применять изоляцию с большой величиной диэлектрической проницаемости. Измерение величины производят в фарадах на метр погонный (Ф/м). Единица измерения получила свое название в честь великого английского ученого Майкла Фарадея, внесшего весомый вклад в науку в области электромагнетизма.

Угол диэлектрических потерь

Диэлектрические потери – энергия электрического поля, рассеивающаяся в изоляционном материале за определенную единицу времени. Энергия никуда не исчезает, а переходит из одного состояния в другое (тепло). Чем выше величина потерь, тем больше риск теплового разрушения диэлектрика. Эта характеристика электроизолирующего материала измеряется тангенсом угла диэлектрических потерь. Зависимость тангенса угла от значения диэлектрических потерь линейная.

Классификации изоляторов

Электроизоляторы различаются по своему происхождению и агрегатному состоянию. Что касается происхождения, то в качестве признаков выделяют принадлежность к органическим и неорганическим материалам, а также к натуральному и синтетическому сырью. К природным материалам можно отнести слюду, которая характеризуется прочностью, гибкостью и способностью к расщеплению. Это неорганический диэлектрик естественного происхождения. И напротив, в группе синтетических органических материалов можно отметить химические высокомолекулярные соединения. В готовом к использованию виде они предлагаются как пластмассы и эластомеры. Основные эксплуатационные различия определяет классификация электроизоляционных материалов по агрегатному состоянию. Выделяются твердые и жидкостные, а также газообразные диэлектрики.

Уровень сопротивления

Изоляционные материалы

При этом не стоит забывать о возможных утечках тока, которые иногда возникают между внешней средой и жилами кабеля. Основная задача любой изоляции – не допустить подобного. Показатель, полученный при измерении уровня сопротивления, должен характеризовать уровень и качество изоляции. Чем выше этот уровень, тем лучше защищены жилы кабеля, которые являются проводниками тока. У каждой модели свои обозначения этого показателя. Подобные показатели четко прописаны в ГОСТах или других технических условиях. Измерения должны проводиться при показателе в +20⁰С. Для этого используется мегаомметр. Если измерения проводятся в условиях минусовой температуры, то полученный коэффициент будет существенно занижен, а при жаре – завышен. После первых снятий показателей они будут занесены в специальный протокол, который потом будет сравниваться с действующими нормативами. Это и станет показателем пригодности кабеля к дальнейшему использованию. Если полученные данные не отвечают полученным показателям, проводка полностью или частично заменяется.

Термоусадочные трубки

Материал, из которого производят эти трубки – это полимер. Отмечу, что применять такой вид оболочки лучше всего на мало напряжённом оборудовании, когда напряжении не выше 1 кВ.

Для того чтобы использовать этот метод создания оболочки для электропроводки, вам необходимо выполнить некоторые действия:

  • Для начала нужно подготовить отрезок трубки термоусадочного типа. Для этого измерьте оголенный участок электропровода, предварительно выключив электричество. Отрезаем кусок трубки, лучше, если он будет немного больше, чем нужно. Где-то на 2-3 сантиметра.
  • Далее берем кусок трубки и одеваем на конец одного из проводов.
  • После выполнения второго пункта, необходимо скрутить проводку.
  • Последним этапом переносим трубку термоусадочного типа на место соединения проводки и используя строительный фен, закрепляем результат.

Изоляционные материалы

После проделанных действий термоусадочная трубка плотно прижмется к проводке. В случае отсутствия строительного фена вполне подойдет зажигалка. Ее следует аккуратно держать на мальком расстоянии от места соединения проводов.

Изоляционные материалы

Изоляционные материалы

Бывают разные трубки. Все зависит от нужной температуры, которую должна выдержать трубка, а также от напряжения. Чтобы узнать характеристики трубки, необходимо посмотреть на маркировку, которую ставят производители еще на заводе по изготовлению данных изделий.

Изоляционные материалы

Существуют трубки различные в диаметре, по расцветке, а также для определенных сечений кабелей. Этот плюс позволяет подобрать максимально подходящую термоусадочную трубку.

  • Соединитель проводов: инструкция, как выполнить соединение своими руками. Инструкция по применению клеммы, сжима и наконечников
  • Наконечники для проводов: инструкция как выбрать и установить наконечник. Обзор всех видов, фото, инструкция, схемы

  • Термоусадка для проводов: все виды и характеристики. Подробное описание как выбрать и использовать термоусадку

Изоляционные материалы

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: