Кавитационный теплогенератор: устройство, виды, применение

Физические основы

Кавитация – образование пара в массе воды при медленном понижении давления и большой скорости движения.

Пузырьки пара могут возникать под действием звуковой волны определённой частоты или излучением источника когерентного света.

В процессе смешивания паровых пустот с водой под давлением приводит к самопроизвольному схлопыванию пузырьков и возникновению движения воды ударной силы (про расчет гидравлического удара в трубопроводах написано ).

В таких условиях молекулы растворенных газов выделяются в образующиеся полости.

По мере прохождения процесса кавитации, температура внутри пузырьков повышается до 1200 градусов.

Это отрицательно влияет на материалы водяных емкостей, поскольку кислород при таких температурах начинает интенсивно окислять материал.

Опыты показали, что при таких условиях разрушению подвергаются даже сплавы из драгметаллов.

Сделать кавитационный генератор самостоятельно, достаточно просто. Хорошо изученная технология уже несколько лет воплощена в материалы и используется для отопления помещений.

В России, первое устройство было запатентовано в 2013 году.

Генератор представлял собой замкнутую емкость, через которую под давлением подавалась вода. Пузырька пара образовываются под действием переменного электромагнитного поля.

А что вам известно про полипропиленовые трубы для холодного и горячего водоснабжения? В полезной статье прочитайте о том, чем они отличаются, а также про преимущества одних и недостатки других.

Отзывы на моющие средства для посудомоечных машин прочитайте на этой странице.

Технология работы теплогенератора отопления

Насос повышает давление воды и подает его в рабочую камеру, патрубок которой соединен с ним при помощи фланца. В рабочем корпусе вода должна получить увеличенную скорость и давление, что осуществляется при помощи труб различного диаметра, сужающихся по ходу потока. В центре рабочей камеры происходит смешение нескольких напорных потоков, приводящее к явлению кавитации.

Чтобы можно было контролировать скоростные характеристики водного потока, на выходе и ходе рабочей полости устанавливают тормозные устройства.

Вода передвигается к патрубку в противоположном конце камеры, откуда поступает в возвратном направлении для повторного использования при помощи насоса циркуляционного действия. Нагрев и получение тепла происходит за счет движения и резкого расширения жидкости на выходе из узкого отверстия сопла.

Положительные и отрицательные свойства теплогенераторов

Кавитационные насосы относят к простым устройствам. В них происходит преобразование механической двигательной энергии воды в тепловую, которая расходуется на отопление помещения. Прежде чем построить кавитационный агрегат своими руками следует отметить плюсы и минусы такой установки. К положительным характеристикам относят:

  • эффективное образование тепловой энергии;
  • экономный в работе за счет отсутствия топлива как такового;
  • доступный вариант приобретения и изготовления своими руками.

Теплогенераторы имеют недостатки:

  • шумная работа насоса и явления кавитации;
  • материалы для производства не всегда достать просто;
  • использует приличную мощность для помещения в 60– 80 м2;
  • занимает много полезного пространства комнаты.

https://youtube.com/watch?v=AX8Jit3w8lI

https://youtube.com/watch?v=ngegV5tl3fM

Описание генератора

Существуют разные виды вихревых тепрогенераторов, в основном различают их по форме. Ранее использовались только трубчатые модели, сейчас активно применяют круглые, ассиметричные или овальные. Нужно отметить, что это небольшое устройство может обеспечить полностью автономное отопление, а при правильном подходе еще и горячее водоснабжение.

Вихревой и гидровихревой теплогенератор, представляет собой механическое устройство, которое отделяет сжатый газ их горячих и холодных потоков. Воздух, выходящий из «горячего» конца, может достигать температуры 200 ° С, а из холодного доходить до -50. Нужно отметить, что главным преимуществом такого генератора является то, что это электрическое устройство не имеет движущихся частей, все стационарно закреплено. Трубы чаще всего изготовлены из нержавеющей легированной стали, которая отлично противостоит высоким температурам и внешним разрушающим факторам (давлению, коррозии, ударным нагрузкам).

Сжатый газ вдувают по касательной в вихревую камеру, после чего он ускоряется до высокой скорости вращения. В связи с коническим соплом на конце выходной трубы, только «входящая» часть сжатого газа допускается для движения в данном направлении. Остальная часть вынуждено возвращается во внутренний вихрь, который является меньшего диаметра, чем наружный.

Где используются вихревые теплогенераторы энергии:

  1. В холодильных установках;
  2. Для обеспечения отопления жилых зданий;
  3. Для нагрева промышленных помещений;

Нужно учитывать, что вихревой газовый и гидравлический генератор имеет меньшую эффективность, чем традиционное оборудование для кондиционирования воздуха. Они широко используются для недорогого точечного охлаждения, когда доступен сжатый воздух из локальной сети обогрева.

Видео: изучение вихревых теплогенераторов

Аргументы в пользу выбора воздушной системы

По сравнению с привычными системами, работающими на жидком теплоносителе, воздушные схемы имеют значимые преимущества. Рассмотрим их поподробнее.

  1. Высокий КПД воздушных систем. Производительность контуров нагрева воздухом достигает порядка 90%.
  2. Возможность отключения/включения оборудования в любое время года. Прерывание работы возможно даже в самые сильные зимние холода. Это означает, что отключенная отопительная система не придет в негодность при отрицательных температурах, что, например, неизбежно для водяного отопления. Включить в работу ее можно в любой момент.
  3. Невысокая эксплуатационная стоимость воздушного отопления. Отсутствие необходимости приобретения и монтажа достаточно дорогостоящего оборудования: запорной арматуры, переходников, радиаторов, труб и др.
  4. Возможность объединения систем отопления и кондиционирования. Результат объединения позволяет поддерживать в здании комфортную температуру в любой сезон.
  5. Низкая инерционность системы. Это обеспечивает предельно быстрый прогрев помещений.
  6. Возможность установки дополнительного оборудования, которое используется для поддержания оптимального микроклимата. Это могут быть ионизаторы, увлажнители, стерилизаторы и тому подобное. Благодаря этому можно подобрать комбинацию приборов и фильтров, точно соответствующую потребностям жильцов дома.
  7. Максимально равномерный прогрев помещений без локальных зон подогрева. Указанные проблемные участки обычно находятся около радиаторов и печей. За счет этого удается предотвратить температурные перепады и их следствие – нежелательную конденсацию водяных паров.
  8. Универсальность. Воздушное отопление можно использовать для обогрева помещений любой площади, расположенных на каком угодно этаже.
Популярные статьи  Освещение коридоров

Есть у системы и некоторые недостатки. Из числа наиболее значимых стоит отметить энергозависимость конструкции. Таким образом, при отключении электроэнергии отопление перестает функционировать, что особенно заметно в местностях с перебоями в электроснабжении. Кроме того, система требует частого технического обслуживания и наблюдения.

Воздушное отопление очень экономично. Первоначальные затраты на его обустройство невелики, эксплуатационные расходы тоже невысокие

Еще одна отрицательная особенность воздушного отопления заключается в том, что монтаж конструкции должен осуществляться в процессе строительства. Установленная система не подлежит модернизации и практически не меняет свои эксплуатационные характеристики.

При необходимости возможен монтаж воздушного отопления в построенном здании, но в этом случае используются только подвесные воздуховоды, что не эстетично и не всегда эффективно. Дата: 25 сентября 2021

Принцип действия

Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий

Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.

Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.

На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.

Принцип действия кавитационного преобразователя

Иллюстрация Описание процесса
  1. В преобразователь трубного типа подается основной поток жидкой среды обычной температуры;
  2. Навстречу движению основного потока подаются дополнительные потоки жидкой среды;
  3. Разнонаправленные потоки, сталкиваясь, создают эффект кавитации, за счет чего жидкая среда на выходе из преобразователя нагревается.

Устройство и особенности функционирования

Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта

В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Принцип действия

Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.

Кавитационный теплогенератор: устройство, виды, применение

В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.

Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.

Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.

Кавитационный теплогенератор: устройство, виды, применение

Достоинства вихревого теплогенератора
:

  • Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
  • Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
  • Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
  • Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
  • Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.

Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы
: это высокая стоимость и редкое применение на практике.

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).\

Популярные статьи  Принцип работы токовой направленной защиты нулевой последовательности в электрических сетях 110 кв

Инструмент, необходимый для сборки агрегата

С нуля собрать такой агрегат самостоятельно невозможно, так как для его изготовления потребуется задействовать технологическое оборудование, которого у домашнего мастера просто нет. Поэтому своими руками обычно собирают лишь агрегат, в некотором роде повторяющий . Его называют прибором Потапова.

Однако даже для сборки этого устройства необходимо оборудование:

  1. Дрель и набор сверл для нее;
  2. Сварочный аппарат;
  3. Машинка для шлифовки;
  4. Ключи;
  5. Крепеж;
  6. Грунтовка и малярная кисть.

Кроме этого потребуется приобретение двигателя, работающего от сети в 220 В и неподвижная основа для установки на ней самого прибора.

Этапы изготовления генератора

Сборка устройства начинается с подключения к насосу, желательного напорного типа, патрубка смешивания. Его присоединяют, используя специальный фланец. В центре донышка патрубка выполняется отверстие, по которому будет выводиться горячая вода. Чтобы контролировать ее поток используется тормозящее приспособление. Оно находится перед донышком.

Но так как в системе циркулирует и холодная вода, то ее течение должно также регулироваться. Для этого используют дисковый выпрямитель. При остывании жидкости она направляется к горячему концу, где в специальном смесителе происходит ее смешивание с нагретым теплоносителем.

Далее переходят к сборке конструкции вихревого теплогенератора своими руками. Для этого использую шлифовальную машинку нарезают угольники из которых собирается основная конструкция. Как это сделать видно на расположенном ниже чертеже.

Кавитационный теплогенератор: устройство, виды, применение
Собирать конструкцию можно двумя способами:

  • Используя болты и гайки;
  • При помощи сварочного аппарата.

В первом случае приготовьтесь к тому, что придется выполнить отверстия под крепеж. Для этого нужна дрель. В процессе сборки необходимо учитывать все размеры – это поможет получить агрегат с заданными параметрами.

Самый первый этап – это создание станины, на которой устанавливается двигатель. Ее собирают из железных уголков. Размеры конструкции зависят от размеров двигателя. Они могут отличаться и подбираются под конкретное устройство.

Чтобы закрепить двигатель на собранной станине потребуется еще один угольник. Он будет выполнять роль поперечины в конструкции

При выборе двигателя специалисты рекомендуют обращать внимание на его мощность. От этого параметра зависит количество нагреваемого теплоносителя. Смотрим видео, этапы сборки теплогенератора:

Смотрим видео, этапы сборки теплогенератора:

Последний этап сборки – это покраска рамы и подготовка отверстий для установки агрегата. Но прежде, чем приступать к монтажу насоса следует рассчитать его мощность. Иначе двигатель может не справиться с запуском установки.

После того, как все комплектующие подготовлены насос присоединяется к отверстию из которого поступает под давлением вода и агрегат готов к работе. Теперь, используя второй патрубок его подсоединяют к отопительной системе.

Подключение прибора к системе происходит следующим образом. Сначала его подсоединяют к отверстию, по которому поступает вода. Она при этом находится под давлением. Второй патрубок используется для непосредственного подсоединения к системе отопления. Чтобы изменять температуру теплоносителя за патрубком находится запирающее устройство. При его перекрытии температура в системе постепенно увеличивается.

Могут использоваться и дополнительные узлы. Однако стоимость такого оборудования достаточно высокая.

Смотрим видео, конструкция после изготовления:

Корпус будущего генератора можно выполнить сварным. А детали к нему по вашим чертежам выточит любой токарь. Обычно он имеет форму цилиндра, закрытого с обеих сторон. По сторонам корпуса выполняются сквозные отверстия. Они нужны для подсоединения агрегата к системе отопления. Внутри корпуса помещают жиклер.

Наружную крышку генератора обычно изготавливают из стали. Затем в ней выполняются отверстия под болты и центральное, к которому впоследствии приваривается штуцер для подачи жидкости.

На первый взгляд кажется, что ничего сложного в сборке теплогенератора своими руками на дровах нет. Но на самом деле эта задача не такая уже и легкая. Конечно, если не спешить и хорошо изучить вопрос, то справиться можно. Но при этом очень важна точность размеров выточенных деталей. И особого внимания требует изготовление ротора. Ведь в случае, если он будет выточен неправильно агрегат станет работать с высоким уровнем вибрации, что негативно скажется на всех деталях. Но большего всего в такой ситуации страдают подшипники. Они будут очень быстро разбиваться.

Только правильно собранный теплогенератор будет работать эффективно. При этом его КПД может достигать 93%. Поэтому специалисты советуют.

Популярные модели

Отечественными производителями предлагаются модели кавитаторов гидроударного и электрогидроударного типа. Линейка включает в себя агрегаты небольшой мощности.

ВТГ-2.2

Оборудование представляет собой прибор малой мощности, который подходит для отопления сооружения объемом до 90 м³. Стоимость продукции варьируется в пределах 32-35 т. р.

ВГТ-30

Агрегат средней мощности, разработан для обогрева зданий объемом до 1400 м³. Требуется комплектация в виде шкафа управления. Цена изделия – около 150 000 р.

ИТПО

Продукция ижевских производителей, как заявляют поставщики кавитаторов, располагает КПД до 150%

Несмотря на высокий диапазон стоимости, модель привлекает внимание широкой аудитории потребителей

Виды

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.

Популярные статьи  Можно ли поставить в доме с газом индукционную плиту?

Кавитационный теплогенератор: устройство, виды, применение
Рис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:

Кавитационный теплогенератор: устройство, виды, применение
Рис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.

Кавитационный теплогенератор: устройство, виды, применение
Рис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Самостоятельное изготовление оборудования

Создать кавитатор своими руками вполне реально, но предварительно стоит ознакомиться со схематическими особенностями, точными чертежами агрегата, понять и подробно изучить принцип, по которому он действует. Наиболее простой моделью принято считать ВТГ Потапова с показателем КПД в 93%. Схематически теплогенератор довольно прост, будет уместен в быту и промышленном применении.

Приступая к сборке агрегата, необходимо подобрать в систему насос, который должен полностью соответствовать требованиям мощности, необходимой тепловой энергии. В большинстве своем описываемые генераторы по форме напоминают сопло, такие модели самые удобные и простые для домашнего применения.

Кавитационный теплогенератор: устройство, виды, применениеПри собственноручном создании теплогенератора не забываем нужные зап.части, например, гильзы

Создание кавитатора невозможно без предварительной подготовки определенных инструментов и приспособлений. К ним относятся:

  • патрубки входного и выходного типа, оснащенные краниками;
  • манометры, измеряющие давление;
  • термометр, без которого невозможно произвести замер температуры;
  • гильзы, которыми дополняются термометры;
  • вентили, с помощью которых из всей отопительной системы устраняются воздушные пробки.

Специалисты рекомендуют следить за диаметральным показателем сечения отверстия, которое присутствует между конфузором и диффузором. Оптимальные пределы варьируются от 8 до 15 единиц, выход за эти рамки нежелателен.

Последовательность конструирования кавитационного теплогенератора своими руками представлена следующими действиями:

Выбор насоса, который предназначен для эксплуатации с жидкостями высоких температур. В противном случае он быстро выйдет из строя. К такому элементу предъявляется обязательное требование: создание давления от 4 атмосфер.
Выполнение емкости для кавитации. Главным условием выступает подбор необходимого по сечению проходного канала.
Выбор сопла с учетом особенностей конфигурации. Такая деталь может быть цилиндрического, конусообразного, округлого типа

Важно, чтобы на входе воды в емкость развивался вихревой процесс.
Подготовка внешнего контура — немаловажная процедура. Он представляет собой изогнутую трубку, которая отходит от кавитационной камеры

Далее она соединяется с двумя гильзами от термометра и двумя манометрами, а также с воздушным вентилем, помещенным в пространство между выходом и входом.

Когда закончена работа с корпусом, следует поэкспериментировать с обогревателем. Процедура заключается в подведении насосной установки к электросети, при этом радиаторы подключаются с обогревательной системой. Следующий шаг — включение сети.

Если конструкция работает исправно, в нее подается необходимое количество воды. Хороший показатель — подогрев жидкости на 3-5 градусов за 10-15 минут.

Нагреватель кавитационного типа представляет собой выгодную установку, за короткое время обогревает здание, к тому же максимально экономичен. При желании он легко конструируется в домашних условиях, для чего понадобятся доступные и недорогие приспособления.

Плотно занимаясь вопросами утепления и отопления дома, мы часто сталкиваемся с тем, что появляются какие-то чудо-приборы или материалы, которые позиционируются как прорыв века. При дальнейшем изучении оказывается, что это очередная манипуляция. Яркий тому пример кавитационный теплогенератор. В теории все получается очень выгодно, но пока на практике (в процессе полноценной эксплуатации) доказать эффективность прибора не удалось. То ли времени не хватило, то ли не все так гладко.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: