Классификация систем управления по алгоритму функционирования

Классификация систем автоматического управления (САУ)

По характеру управления:

  • системы управления
  • системы регулирования

По характеру действия:

  • системы непрерывного действия
  • системы дискретного действия
  • системы релейного действия

По степени использования информации о состоянии объекта управления:

  • управление с ОС
  • управление без ОС

По степени использования информации о параметрах и структуре объекта управления:

  • адаптивный
  • неадаптивный
  • поисковый
  • беспоисковый
  • с идентификацией
  • с переменной структурой

По степени преобразования координат в САУ:

  • детерминированный
  • стохастический (со случайными воздействиями)

По виду математической модели преобразования координат:

  • линейные
  • нелинейные (релейные, логические и др.)

По виду управляющих воздействий:

  • аналоговые
  • дискретные (прерывные, импульсные, цифровые)

По степени участия человека:

  • ручные
  • автоматические
  • автоматизированные (человек в управлении)

По закону изменения выходной переменной:

  • стабилизирующая: предписанное значение выходной переменной является неизменным.
  • программная: выходная переменная изменяется по определенной, заранее заданной программе.
  • следящая: предписанное значение выходной переменной зависит от значения неизвестной заранее переменной на входе автоматической системы.

По количеству управляемых и регулируемых переменных:

  • одномерные: если объект имеет только одну управляемую величину;
  • многомерные: если объект имеет относительно большое число управляемых величин и соответствующие им число управляющих воздействий.

По степени самонастройки, адаптации, оптимизации и интеллектуальности:

  • экстремальные
  • самонастраивающиеся
  • интеллектуальные

По воздействию чувствительного (измерительного) элемента на регулирующий орган:

  • системы прямого управления
  • системы косвенного управления

Классификация и типы СКУД

В
зависимости от роли человека в процессе управления, форм коммуникации и
функционирования связи человек-машина, распределения информации и функций
управления между оператором и компьютером, между компьютером и средствами
контроля и управления, все системы можно разделить на два класса.

1)
Информационные системы, обеспечивающие сбор и вывод легко просматриваемой
измерительной информации о процессе или производственном потоке. Расчеты
определяют, какие контрольные действия должны быть предприняты для обеспечения
того, чтобы контролируемый процесс работал в оптимальном режиме. Генерируемая
управляющая информация используется в качестве рекомендации оператору, при этом
основная роль человека и машины играет вспомогательную роль и предоставляет
необходимую информацию.

Целью
таких систем является предоставление оператору высоконадежной информации для
принятия эффективных решений. Характерной особенностью информационных систем
является то, что компьютер работает в разомкнутом контуре. А информационные
системы возможны на разных уровнях: от простых, в которых данные о состоянии
производственного процесса записываются вручную, до встроенных диалоговых
систем высокого уровня.

Информационные
системы должны, с одной стороны, сообщать о нормальном производственном процессе,
а с другой — предоставлять информацию о ситуациях, вызванных отклонениями от
нормального процесса.

Существует
два типа информационных систем: информационно-справочные системы (пассивные),
которые предоставляют информацию оператору по запросу после связи с системой,
информационно-справочные системы (активные), которые, в свою очередь,
предоставляют абоненту информацию, предназначенную для него периодически или с
определенной периодичностью.

Системы управления, которые, помимо сбора информации, обеспечивают выдачу команд субъектам или исполнительным механизмам Системы управления обычно работают в режиме реального времени, т.е. в ритме технологического или производственного процесса. В системах управления наиболее важную роль играет машина, а человек контролирует и решает самые сложные задачи, которые по тем или иным причинам компьютерная система не может решить.

Принято
рассматривать каждую СКУД одновременно в двух аспектах: с точки зрения ее
функций (что и как она делает) и с точки зрения ее схемы, т.е. средств и
методов, используемых для реализации этих функций. Соответственно, СКУД
разделена на две группы подсистем — функциональную и систему доставки.

Аналитические методы

Достоинства аналитических методов:

  • позволяют определить математическое описание еще на стадии проектирования системы управления;
  • позволяют учесть все основные особенности динамики объекта управления, такие, как наличие нелинейностей, нестационарность, распределенные параметры и т.д.;
  • обеспечивают получение универсального математического описания, пригодного для широкого класса аналогичных объектов управления.

Недостатки:

  • трудность получения достаточно точной математической модели, учитывающей все особенности реального объекта;
  • проверка адекватности модели и реального процесса обычно требует проведения натурных экспериментов;
  • многие математические модели имеют ряд трудно оцениваемых в численном выражении параметров.

интеллектуальные сау

ИСАУ — это системы, которые позволяют проводить обучение, адаптацию или настройку за счет запоминания и анализа информации о поведении объекта, его СУ и внешних воздействий. Особенностью данных систем является наличие базы данных машины логического вывода, подсистемы объяснений и др.

База знаний — формализованные правила в виде логических формул, таблиц и т. п. ИСУ используется для управления плохо формализованными или сложными техническими объектами.

Класс ИСУ соответствует признакам:

  • Наличие взаимодействий СУ с реальным внешним миром с использованием информационных каналов связи.
  • Открытость системы — нужна для пополнения и приобретения знаний.
  • Наличие механизмов прогноза изменений среды функционирования системы.
  • Неточность информации об ОУ может быть компенсирована за счет повышения интеллектуализации алгоритма управления.
  • Сохранение функционирования при разрыве связи.

Если ИСУ удовлетворяет всем 5-ти признакам, то она интеллектуальна в «большом», иначе в «маленьком» смысле.

1.1. Информационные системы

Цель таких систем – получение оператором информации с высокой достоверностью для эффективного принятия решений. Характерной особенностью для информационных систем является работа ЭВМ в разомкнутой схеме управления. Причём возможны информационные системы различного уровня.

Популярные статьи  Контакторы электромагнитные

Информационные системы должны, с одной стороны, представлять отчёты о нормальном ходе производственного процесса и, с другой стороны, информацию о ситуациях, вызванных любыми отклонениями от нормального процесса.

Различают два вида информационных систем: информационно-справочные (пассивные), которые поставляют информацию оператору после его связи с системой по соответствующему запросу, и информационно-советующие (активные), которые сами периодически выдают абоненту предназначенную для него информацию.

В информационно справочных системах ЭВМ необходима только для сбора и обработки информации об управляемом объекте. На основе информации, переработанной в ЭВМ и предоставленной в удобной для восприятия форме, оператор принимает решения относительно способа управления объектом.

Системы сбора и обработки данных выполняют в основном те же функции, что и системы централизованного контроля и являются более высокой ступенью их организации. Отличия носят преимущественно качественный характер.

В информационно-советующих системах наряду со сбором и обработкой информации выполняются следующие функции:

определение рационального технологического режима функционирования по отдельным технологическим параметрам процесса;

определение управляющих воздействий по всем или отдельным параметрам процесса;

определение значений (величин) установок локальных регуляторов.

Данные о технологических режимах и управляющих воздействиях поступают через средства отображения информации в форме рекомендаций оператору. Принятие решений оператором основывается на собственном понимании хода технологического процесса и опыта управления им. Схема системы советчика совпадает со схемой системы сбора и обработки информации.

Определение динамических характеристик объекта управления по кривой его разгона

При определении динамических характеристик объекта по кривой его разгона на вход подается или ступенчатый сигнал или прямоугольный импульс. Во втором случае кривая отклика должна быть достроена до соответствующей кривой разгона.

При снятии кривой разгона необходимо выполнить ряд условий:

  1. Если проектируется система стабилизации, то кривая разгона должна сниматься в окрестности рабочей точки процесса.
  2. Кривые разгона необходимо снимать как при положительных, так и отрицательных скачках управляющего сигнала. По виду кривых можно судить о степени асимметрии объекта. При небольшой асимметрии расчет настроек регулятора рекомендуется вести по усредненным значениям параметров передаточных функций, а линейная асимметрия наиболее часто проявляется в тепловых объектах управления.
  3. При наличии зашумленного выхода желательно снять несколько кривых разгона с их последующим наложением друг на друга и получением усредненной кривой.
  4. При снятии кривой разгона необходимо выбирать наиболее стабильные режимы процесса, когда действие случайных внешних возмущений маловероятно.
  5. При снятии кривой разгона амплитуда тестового сигнала должна быть, с одной стороны, достаточно большой, чтобы четко выделялась кривая разгона на фоне шумов, а с другой стороны, она должна быть достаточно малой, чтобы не нарушать нормальной работы объекта.

Сняв кривую разгона и оценив характер объекта управления (с самовыравниванием или без), можно определить параметры соответствующей передаточной функции. Например, передаточную функцию вида (1) рекомендуется применять для объектов управления с явно выраженной доминирующей постоянной времени (одноемкостный объект). Перед началом обработки кривую разгона рекомендуется пронормировать (диапазон изменения нормированной кривой 0 –1) и выделить из ее начального участка величину чистого временного запаздывания.

Рассмотрим нормированную кривую разгона объекта, у которой заранее выделена величина чистого запаздыванияt3 =3 мин. Построим график кривой разгона (рис.2) по ее значениям, приведенным в таблице 1.

Таблица 1

2 4 6 8 10 12 14
0,087 0,255 0,43 0,58 0,7 0,78 0,84

Динамический коэффициент усиления K объекта определяется как отношение приращения выходного сигнала к приращению входного в окрестности рабочей точки.

Определение динамических характеристик объектов по кривой разгона можно производить двумя методами.

  1. Метод касательной к точке перегиба кривой разгона. В данном случае точка перегиба соответствует переходу кривой от режима ускорения к режиму замедления темпа нарастания выходного сигнала. Постоянная времени Т и динамическое запаздываниеtd определяются в соответствии с графиком рис.2, то естьt =t3 +td .
  2. Формульный метод позволяет аналитически вычислить величину динамического запаздывания и постоянной времени по формулам

где значение hA берется в окрестности точки перегиба кривой, а значение hB принимается равным 0,8 –0,85.По этим значениям определяются и моменты времени tA и tB .

Методику определения параметров динамической модели (3) объекта без самовыравнивания рассмотрим на примере кривой разгона уровня в барабане котла теплоагрегата. Предполагается, что на вход объекта увеличили подачу воды на 10 т/час =.G, при этом уровень начал увеличиваться. Приращение уровня зафиксировано в таблице 2.

Таблица 2

tc ,сек 100 200 300
Dh,мм 20 76 135

График разгонной характеристики объекта без самовыравнивания, построенной в соответствии с приведенной таблицей, показан на рис.3.

Для объекта без самовыравнивания коэффициент усиления определяется как отношение установившейся скорости изменения выходной величины к величине скачка входного сигнала. В нашем примере

Величина динамического запаздывания определяется так, как показано на рис.3.

2.1. Критерии классификации

Классификация АСУ существенным образом зависит от критериев классификации.

По виду используемой управляющим устройством информации различают разомкнутые и замкнутые АСУ: в разомкнутых системах отсутствует обратная связь между выходом объекта управления и входом управляющего устройства. В таких системах управляемая величина не контролируется. При наличии обратной связи объект управления и управляющее устройство образуют замкнутый контур, обеспечивающий автоматический контроль за состоянием объекта управления.

Популярные статьи  Трехфазный стабилизатор напряжения

По характеру изменения задающего воздействия АСУ можно отнести к следующим видам:

— автоматической стабилизации, задающее воздействие в которых постоянно; эти системы предназначены для поддержания постоянства некоторого физического параметра (температуры, давления, скорости вращения и т.д.);

— программного управления, задающее воздействие в которых изменяется по какому–либо заранее известному закону (например, по определенной программе может осуществляться изменение скорости вращения электропривода, изменение температуры изделия при термической обработке и т.д.);

— следящие, задающее воздействие в которых изменяется по произвольному, заранее неизвестному закону (используются для управления параметрами объектов управления при изменении внешних условий).

В последние годы все большее значение приобретают адаптивные АСУ, характеризующиеся действием на объект управления каких–либо абсолютно неизвестных факторов. В результате возникает необходимость решения задачи управления в условиях неопределенности исходных данных для принятия решения об управляющих воздействиях. Эти системы могут приспосабливаться к изменениям внешней среды и самого объекта управления, а также улучшать свою работу по мере накопления опыта, т.е. информации о результатах управления.

В свою очередь адаптивные АСУ делятся на:

— оптимальные, которые обеспечивают автоматическое поддержание в объекте управления наивыгоднейшего режима;

— самонастраивающиеся, параметры объекта управления у которых не остаются неизменными, а преобразуются при изменении внешних условий;

— самоорганизующиеся, алгоритм работы у которых не остается неизменным, а совершенствуется при изменении параметров объекта управления и внешних условий;

— самообучающиеся, которые анализируют накопленный опыт управления объектом и на основании этого автоматически совершенствуют свою структуру и способ управления.

По характеру действия АСУ подразделяют на непрерывные и дискретного действия. В непрерывных АСУ при плавном изменении входного сигнала также плавно изменяется и выходной сигнал. В дискретных АСУ при плавном изменении входного сигнала выходной сигнал изменяется скачкообразно. Методы управления, основанные на применении цифровой техники, всегда приводят к дискретным АСУ.

По характеру изменения параметров сигналов АСУ можно разделить на линейные и нелинейные, стационарные и нестационарные. По количеству самих параметров АСУ являются одномерными или многомерными (многопараметрическими).

Необходимо отметить, что классификацию АСУ можно построить и на основе других критериев, например, можно классифицировать АСУ по физической сущности системы или ее основных звеньев, по мощности исполнительного устройства и т.д. Каждый из упомянутых способов классификации АСУ чаще всего является независимым от остальных. Это означает, что каждый из них можно представить как шкалу в многомерном фазовом пространстве, тогда конкретным АСУ в этом пространстве будут соответствовать точки или определенные области.

Категории автоматизированных систем

Классификация структур автоматизированных систем в промышленной сфере разделяется на такие категории:

Децентрализованная структура. Система с данной структурой применяется для автоматизации независимых объектов управления и является наиболее эффективной для этих целей. В системе имеется комплекс независимых друг от друга систем с индивидуальным набором алгоритмов и информации. Каждое выполняемое действие осуществляется исключительно для своего объекта управления.

Централизованная структура. Реализует все необходимые процессы управления в единой системе, осуществляющей сбор и структурирование информации об объектах управления. На основании полученной информации, система делает выводы и принимает соответствующее решение, которое направлено на достижение первоначальной цели.

Централизованная рассредоточенная структура. Структура функционирует по принципам централизованного способа управления. На каждый объект управления вырабатываются управляющие воздействия на основании данных обо всех объектах. Некоторые устройства могут быть общими для каналов.

Алгоритм управления основывается на комплексе общих алгоритмов управления, реализующиеся с помощью набора связанных объектов управления. При работе каждый орган управления принимает и обрабатывает данные, а также передает управляющие сигналы на объекты. Достоинством структуры является не столь строгие требования относительно производительности центров обработки и управления, не причиняя ущерба процессу управления.

Иерархическая структура. В связи с возрастанием количества поставленных задач в управлении сложными системами значительно усложняются и отрабатывающиеся алгоритмы. В результате чего появляется необходимость создания иерархической структуры. Подобное формирование значительно уменьшает трудности по управлению каждым объектом, однако, требуется согласовать принимаемые ими решения.

Возможно, вам также будет интересно

Для применения в распределенных системах электропитания бортовой аппаратуры авиационной и космической техники одно из предприятий Китайской корпорации электронных технологий (China Electronics Technology Group Corporation — CETC) предлагает преобразователь напряжения HNFA0520S типа POL (Point-of-load), созданный по гибридно-пленочной технологии, параметры которого соответствуют требованиям к напряжению и току современных интегральных микросхем (FPGA, DSP, MCU, ASIC). Ключевые компоненты преобразователя

Технология получения и сферы применения углеродных нанотрубок

Харольд Крото был членом научной группы в университете Сассекса (Англия), изучавшей углеродные молекулы, содержащиеся в межзвездном пространстве. Он предположил, что подобные молекулы могли образоваться в результате химических реакций, происходящих во внешних атмосферах звезд, называемых красными гигантами. Поставив задачу имитировать возможные условия образования таких молекул, Крото обратился к профессору Ричарду Смоли из университета Райса в Хьюстоне,

Эффективное решение задачи создания систем автоматизации зависит от ряда критериев оптимизации на этапе разработки, монтажа и эксплуатации. Среди этих критериев — финансовая выгода, экономия ресурсов и возврат вложений, время на разработку и монтаж, повторяемость, удобство и простота обслуживания, срок службы и надежность, адаптивность, безопасность.

Классификация по виду математического описания

По виду математического описания (уравнений динамики и статики) системы автоматического управления (САУ) подразделяются на линейные и нелинейные системы (САУ или САР).

Популярные статьи  Емкость сферического конденсатора

Каждый “подкласс” (линейных и нелинейных) подразделяется на еще ряд “подклассов”. Например, линейные САУ (САР) имеют различия по виду математического описания.
Поскольку в этом семестре будут рассматриваться динамические свойства только линейных систем автоматического управления (регулирования), то ниже приведем классификацию по виду математического описания для линейных САУ (САР):

1) Линейные системы автоматического управления, описываемые в переменных «вход-выход» обыкновенными дифференциальными уравнениями (ОДУ) с постоянными коэффициентами:

где x(t) – входное воздействие; y(t) – выходное воздействие (регулируемая величина).

Если использовать операторную («компактную») форму записи линейного ОДУ, то уравнение (1.4.1) можно представить в следующем виде:

где, p = d/dt — оператор дифференцирования; L(p), N(p) — соответствующие линейные дифференциальные операторы, которые равны:

2) Линейные системы автоматического управления, описываемые линейными обыкновенными дифференциальными уравнениями (ОДУ) с переменными (во времени) коэффициентами:

В общем случае такие системы можно отнести и к классу нелинейных САУ (САР).

3) Линейные системы автоматического управления, описываемые линейными разностными уравнениями:

где f(…) – линейная функция аргументов; k = 1, 2, 3… — целые числа; Δt – интервал квантования (интервал дискретизации).

Уравнение (1.4.4) можно представить в «компактной» форме записи:

Обычно такое описание линейных САУ (САР) используется в цифровых системах управления (с использованием ЭВМ).

4) Линейные системы автоматического управления с запаздыванием:

где L(p), N(p) — линейные дифференциальные операторы; τ — время запаздывания или постоянная запаздывания.

Если операторы L(p) и N(p) вырождаются (L(p) = 1; N(p) = 1), то уравнение (1.4.6) соответствует математическому описанию динамики звена идеального запаздывания:

y(t)=x(t−τ);

а графическая иллюстрация его свойств привдена на рис . Об этом говорит сайт https://intellect.icu . 1.4.1

Рис. 1.4.1 — Графики входа и выхода звена идеального запаздывания

5) Линейные системы автоматического управления, описываемые линейными дифференциальными уравнения в частных производных. Нередко такие САУ называют распределенными системами управления. ==> «Абстрактный» пример такого описания:

Система уравнений (1.4.7) описывает динамику линейно распределенной САУ, т.е. регулируемая величина зависит не только от времени, но и от одной пространственной координаты.
Если система управления представляет собой «пространственный» объект, то ==>

где y(t,r→) зависит от времени и пространственных координат, определяемых радиусом-вектором r→

6) САУ, описываемые системами ОДУ, или системами разностных уравнений, или системами уравнений в частных производных ==> и так далее…

Аналогичную классификацию можно предложить и для нелинейных САУ (САР)…

Для линейных систем выполеняются следующие требования:

  • линейность статической характеристики САУ;
  • линейность уравнения динамики, т.е. переменные в уравнение динамики входят только в линейной комбинации.

Статической характеристикой называется зависимость выхода от величины входного воздействия в установившемся режиме (когда все переходные процессы затухли).

Для систем, описываемых линейными обыкновенными дифференциальными уравнениями с постоянными коэффициентами статическая характеристика получается из уравнения динамики (1.4.1) приравниванием нулю всех нестационарных членов ==>

На рис.1.4.2 представлены примеры линейной и нелинейных статических характеристик систем автоматического управления (регулирования).

Рис. 1.4.2 — Примеры статических линейных и нелинейных характеристик

Нелинейность членов, содержащих производные по времени в уравнениях динамики, может возникнуть при использовании нелинейных математических операций ( и т.д.). Например, рассматривая уравнение динамики некоторой «абстрактной» САУ

отметим, что в этом уравнении при линейной статической характеристики (y=kd⋅x) второе и третье слагаемые (динамические члены) в левой части уравнения — нелинейные, поэтому САУ, описываемая подобным уравнением, является нелинейной в динамическом плане.

Заключение

Проектирование систем управления играет важную роль в современных технологических системах. Выгоды от её совершенствования систем управления в промышленности могут быть огромны. Они включают улучшение качества изделия, уменьшение потребления энергии, минимизацию максимальных затрат, повышение уровней безопасности и сокращение загрязнения окружающей среды. Трудность здесь состоит в том, что ряд наиболее передовых идей имеет сложный математический аппарат. Возможно, математическая теория систем – одно из наиболее существенных достижений науки ХХ века, но её практическая ценность определяется выгодами, которые она может приносить. Проектирование и функционирование автоматического процесса, предназначенного для обеспечения технических характеристик, таких, например, как прибыльность, качество, безопасность и воздействие на окружающую среду, требуют тесного воздействия специалистов различных дисциплин.

Интенсивное усложнение и увеличение масштабов промышленного производства, развитие экономико-математических методов управления, внедрение ЭВМ во все сферы производственной деятельности человека, обладающих большим быстродействием, гибкостью логики, значительным объёмом памяти, послужили основой для разработки автоматизированных систем управления (АСУ), которые качественно изменили формулу управления, значительно повысили его эффективность. Достоинства компьютерной техники проявляются в наиболее яркой форме при сборе и обработке большого количества информации, реализации сложных законов управления.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: