Лазерные инфракрасные диоды — устройство и применение

Анатомия батарейки

Как же выглядели первые «батарейки»? Собственно, устройство своего изобретения А. Вольта весьма и весьма подробно описал в своём письме сэру Джозефу Бэнксу. Первый же его опыт выглядел следующим образом: Вольта опустил в банку с кислотой медную и цинковую пластинки, а затем соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. «Вольтов столб»

— это, можно сказать, стопка из соединённых между собой пластинок цинка, меди и сукна, пропитанных кислотой и сложенных друг на друга в определённом порядке.

В современных «пальчиковых» и прочих батарейках «начинка» несколько сложнее. В корпусе батарейки упакованы химические реагенты, при взаимодействии которых и выделяется энергия, а также два электрода — анод и катод. Реагенты эти разделены специальной прокладкой, которая не позволяет твердым частям реагентов перемешиваться, но при этом пропускает к ним жидкий электролит.

Жидкий электролит реагирует с твёрдым реагентом, в результате чего возникает заряд. На реагенте анода он отрицательный, а на катодном — положительный. Чтобы не произошло нейтрализации зарядов твёрдые части реагента разделены мембраной.

Чтобы можно было «снять» полученный заряд и передать его на контакты, в анодный реагент вставлен токосниматель, который выглядит очень просто — тоненький не очень длинный штырёк. Есть в батарейке и катодный токосниматель, который располагается под оболочкой батарейки. Саму оболочку называют внешней гильзой.

Оба токоснимателя соприкасаются внутри батарейки с анодом и катодом. Схема работы батарейки в результате такова: химическая реакция, разделение зарядов на реактивах, переход зарядов на токосниматели, далее — на электроды и в питаемое устройство.

https://youtube.com/watch?v=whXIthcJYew

Работа пульта-тестера на практике

Пришло время протестировать наш пульт-тестер. Включаем питание, берем пульт от телевизора и наводим его прямо на TSOP, а именно на выпуклую часть корпуса. Для некоторых пультов приемник будет очень чувствительным (он будет принимать передачу с большого расстояния). Иногда может возникнуть необходимость переместить пульт дистанционного управления на небольшое расстояние — это связано с созданием определенного стандарта дистанционного управления и связи.

Кстати, стоит обратить внимание на фиолетовую точку на корпусе пульта ДУ — это ИК-диод, свечение которого зафиксировала цифровая камера (включите камеру). Красный светодиод загорается только при нажатии кнопки на пульте дистанционного управления

Обратите внимание, дальность действия нашего пульта дистанционного управления настолько велика, что приемник заметит передачу, даже если мы его спрячем за своей спиной. Свет, излучаемый ИК-диодом, выходит из пульта дистанционного управления, отражается от препятствий и возвращается к приемнику.

Лазерные инфракрасные диоды - устройство и применениеРабота пульта-тестера

Принцип действия полупроводникового лазера

В светодиодах, главным источником энергии является процесс спонтанного излучения. Его суть состоит в том, что на анод подается положительный заряд, и диод смещается в прямом направлении. При этом дырки инжектируются из области р в область n р-n перехода, а из области n в область р полупроводника. Поэтому такие устройства часто называют инжекционными полупроводниковыми лазерами. Когда дырка и электрон находятся рядом друг с другом, они рекомбинируют, выделяя фотонную энергию с определенной длиной волны и фонона.

В некоторых случаях электрон и дырка могут продолжительное время (микросекунды) перед рекомбинацией находиться в одном месте. Если в этот момент около них пройдет фотон с частотой резонанса, то произойдет вынужденная рекомбинация с выделением второго фотона. Он будет иметь абсолютно такое же направление, фазу и вектор поляризации, как первый фотон.

Кристалл полупроводника представляет собой тонкую пластину прямоугольной формы. По сути, она служит оптическим волноводом, в котором ограничен объем излучения. Поверхностный слой кристалла может модифицироваться, создавая область n. Нижний же слой служит для образования области р.

Лазерные инфракрасные диоды - устройство и применение

В результате получается переход р-n, которые имеет плоскую форму и значительную площадь. Пара боковых торцов кристалла подвергается полировке, нацеленной на создание параллельных гладких поверхностей, представляющих собой оптический резонатор. Случайный фотон проходит по всему оптическому волноводу перпендикулярно плоскости спонтанного излучения. Перед выходом наружу он несколько раз отражается от торцов и, проходя вдоль резонаторов, создает вынужденную рекомбинацию, порождая новые фотоны с такими же характеристиками. Так излучение усиливается. В момент, когда усиление начинает превосходить потери, появляется луч.

Существуют разные виды полупроводниковых лазеров. Основное их количество выполняется на особо тонком слое. Их структура позволяет формировать лишь параллельное излучение. Однако если выполнить волновод широким относительно длины волны, то он будет работать в разных поперечных режимах. Такие диоды называют многодомовыми. Применение этих лазеров позволяет создать повышенную мощность излучения без надлежащей сходимости луча. Некоторое его рассеивание допустимо. Данный эффект применяется для «накачки» других лазеров в лазерных принтерах и химическом производстве. Тем не менее, если есть необходимость в определенной фокусировке луча, волновод выполняется такой ширины, которая могла бы быть сравнимой с длиной волны.

В последнем случае ширина луча будет зависеть от наложенных рефракцией границ. Приборы, работающие по этому принципу, используются в оптических запоминающих устройствах, лазерных указателях и оптоволоконной технике. Стоит отметить, что они не могут поддерживать несколько продольных режимов и создавать луч на разных длинах волн одновременного. На длину луча влияет запрещенная зона, расположенная между уровнями энергии р и n областей.

Так как излучающий компонент очень тонкий, на выходе лазерный луч сразу же расходится. Для компенсации расходимости полупроводникового лазера и создания тонкого луча используются собирающие линзы. В многодомовых устройствах используют цилиндрические линзы. В однодомовых лазерах при использовании симметричных линз луч в разрезе будет иметь эллиптическую форму, так как вертикальное расхождение превосходит его размер в горизонтальной плоскости. Наглядным тому доказательством служит лазерная указка.

Лазерные инфракрасные диоды - устройство и применение

Практический тест ИК-диода?

Мы рассмотрим использование ИК-диода в одной из следующих наших статей, потому что для того, чтобы сделать это правильно, нам нужно собрать определенную схему. Однако в рамках данного теста вы можете подключить такой диод к источнику питания — как обычный светодиод, например, через резистор 1 кОм.

Лазерные инфракрасные диоды - устройство и применениеСхема простого тестера ИК-диодов

На практике такая система может выглядеть так:

Лазерные инфракрасные диоды - устройство и применение Лазерные инфракрасные диоды - устройство и применение
Схема на макетной плате ИК-диод на практике

Если схема правильно собрана, то после включения питания… ничего не произойдет. То есть, диод будет светить, но невооруженным глазом мы этого не увидим. Однако мы можем видеть, что диод горит, когда мы посмотрим на него, например, используя цифровую камеру на телефоне или веб-камеру, встроенную в ноутбук.

В некоторые цифровые камеры могут быть встроены специальные фильтры, чтобы вы не видели инфракрасное излучение.
Популярные статьи  Провод заземления: маркировка, цвет, требования, сечение
Лазерные инфракрасные диоды - устройство и применение Лазерные инфракрасные диоды - устройство и применение
ИК-светодиод светит — видно через цифровую камеру Не видно свечение ИК-светодиода через цифровую камеру с установленным  фильтром

Направив объектив телефона прямо на диод, вы должны увидеть, что светодиод светится фиолетовым светом. Камера видит инфракрасный свет, в отличие от человеческого глаза.

Этот же метод можно использовать, например, для проверки того, работает ли пульт дистанционного управления от телевизора (то есть, действительно ли он отправляет данные).

Как было сказано ранее, мы еще вернемся к теме использования ИК-светодиодов. Однако сначала нам нужно узнать, среди прочего, про интегрированные инфракрасные приемники.

Виды драйверов

Существуют два главных вида драйверов, способных обеспечить нормальный режим эксплуатации лазерных диодов.

Импульсный драйвер выполнен по аналогии импульсного преобразователя напряжения, способного повышать и понижать этот параметр. Мощности выхода и входа такого драйвера примерно равны. Однако, существует некоторое выделение тепла, на которое расходуется незначительное количество энергии.

Линейный драйвер действует по схеме, которая чаще всего подает напряжение на диод больше, чем требуется. Для его снижения необходим транзистор, преобразующий излишнюю энергию в теплоту. Драйвер имеет малый КПД, поэтому не нашел широкого применения.

При применении линейных микросхем в качестве стабилизаторов, при уменьшении напряжения на входе диодный ток будет снижаться.

Так как питание лазеров выполняется двумя видами драйверов, схемы подключения имеют отличия.

Схема также может содержать источник питания в виде батареи или аккумулятора.

Аккумуляторы должны выдавать напряжение 9 вольт. Также в схеме должен быть резистор, ограничивающий ток, и лазерный модуль. Лазерные диоды можно найти в неисправном приводе дисков от компьютера.

Лазерный диод имеет 3 вывода. Средний вывод подключается к минусу (плюсу) питания. Плюс подключается к правой, либо левой ножке, в зависимости от фирмы изготовителя. Чтобы определить нужную ножку для подключения, необходимо подать питание. Для этого можно взять две батарейки по 1,5 В и сопротивление 5 Ом. Минус источника подключают к средней ножке диода, а плюс сначала к левой, затем к правой ножке. Путем такого эксперимента можно увидеть, какая из этих ножек является «рабочей». Таким же методом диод подключают к микроконтроллеру.

Лазерные диоды могут работать от пальчиковых батареек, аккумулятора сотового телефона. Однако нельзя забывать, что дополнительно требуется ограничивающий резистор номиналом 20 Ом.

Подключение к бытовой сети

Для этого нужно обеспечить вспомогательную защиту от всплесков напряжения высокой частоты.

Стабилизатор и резистор создают блок предотвращающий перепады тока. Для выравнивания напряжения применяют стабилитрон. Емкость предотвращает возникновение скачков напряжения высокой частоты. При правильной сборке обеспечивается стабильная работа лазера.

Порядок подключения

Наиболее удобным для работы будет красный диод мощностью около 200 мВт. Такие лазерные диоды установлены на дисковые приводы компьютеров.

  • Перед подключением с помощью батарейки проверить работу лазерного диода.
  • Выбрать необходимо самый яркий полупроводник. Если диод взят из дискового привода компьютера, то он светит инфракрасным светом. Луч лазера запрещается наводить на глаза, так как это приведет к повреждению глаз.
  • Диод монтировать на радиатор для охлаждения, в виде алюминиевой пластины. Для этого предварительно сверлить отверстие.
  • Между диодом и радиатором промазать термопастой.
  • Резистор на 20 Ом и 5 ватт подключить по схеме с батарейками и лазером.
  • Диод шунтировать керамическим конденсатором любой емкости.
  • Отвернуть от себя диод и проверить его работу, подключив питание. Должен появиться красный луч.

При подключении следует помнить о безопасности. Все соединения должны быть качественными.

История полупроводниковых лазеров

Полупроводниковые лазеры начала 1960-х годов были лазерами с однородным переходом, которые представляли собой диоды с pn переходом, изготовленные из единого материала.

При прямой сильноточной инжекции электроны непрерывно инжектировались в p-область, а дырки непрерывно инжектировались в n-область.

В результате распределение носителей меняется на противоположное в исходной зоне обеднения pn-перехода, и поскольку скорость миграции электронов выше скорости миграции дырок, в активной зоне происходит излучение и компаундирование, испускающее флуоресценцию, и при определенных условиях лазер происходит, который представляет собой полупроводниковый лазер, который может работать только в виде импульса.

Второй этап развития полупроводникового лазера — это полупроводниковый лазер с гетероструктурой, который состоит из двух различных тонких слоев полупроводникового материала с шириной запрещенной зоны, таких как GaAs, GaAlAs, первый из которых представляет собой одиночный гетероструктурный лазер (1969 г.).

Инжекционные лазеры на одиночном гетеропереходе в p-зоне перехода GaAsP-N для снижения пороговой плотности тока, значение которой на порядок ниже, чем у лазеров на гомопереходе, но лазеры на одиночном гетеропереходе по-прежнему не могут работать непрерывно при комнатная температура.

С конца 1970-х годов полупроводниковые лазеры явно развивались в двух направлениях: одно — это информационные лазеры для передачи информации, а второе — мощные лазеры для увеличения оптической мощности.

Управляемый такими приложениями, как твердотельные лазеры с накачкой, мощные полупроводниковые лазеры (непрерывная выходная мощность 100 мВт или более, импульсная выходная мощность 5 Вт или более, можно назвать мощными полупроводниковыми лазерами).

В 1990-е гг. Был совершен прорыв, ознаменовавшийся значительным увеличением выходной мощности полупроводниковых лазеров, были внедрены зарубежные мощные полупроводниковые лазеры киловаттного класса, мощность отечественных образцов устройств достигла 600Вт.

Если мы посмотрим на расширение длин волн лазеров, то сначала инфракрасный полупроводниковый лазер, а затем красный полупроводниковый лазер с длиной волны 670 нм в большом количестве применений, а затем внедрение сине-зеленых, синих полупроводниковых лазеров с длинами волн 650 нм, 635 нм. успешно разработали фиолетовые и даже ультрафиолетовые полупроводниковые лазеры мощностью 10 мВт, но также и в интенсивном развитии.

В конце 1990-х было рассмотрено быстрое развитие лазеров с поверхностным излучением и лазеров с вертикальным резонатором для различных применений в ультрапараллельной оптоэлектронике.

Устройства на 980 нм, 850 нм и 780 нм стали применяться в оптических системах.
В настоящее время лазеры с вертикальным резонатором используются в высокоскоростных сетях Gigabit Ethernet.

Подсоединение к сети 220 В

Полупроводник можно запитать от 220 В. Но здесь необходимо создать дополнительную защиту от высокочастотных всплесков напряжения.

Вариант схемы питания диода от сети в 220 В

Такая схема должна включать в себя следующие элементы:

  • стабилизатор напряжения;
  • токоограничивающий резистор
  • конденсатор;
  • лазерный диод.

Сопротивление и стабилизатор будут образовывать блок, который сможет препятствовать токовым выбросам. Для предотвращения всплесков напряжения необходим стабилитрон. Конденсатор будет препятствовать появлению высокочастотных всплесков. Если такая схема была правильно собрана, то стабильная работа полупроводника будет гарантирована.

Типы диодов

Основное разделение диодов происходит по их виду. Различают три категории: материал изготовления, площадь p-n перехода и назначение.

Для производства диодов используют один из четырех исходных полупроводников:

  • германий – в маломощных и прецизионных цепях, имеет больший коэффициент передачи;
  • кремний – недорогие и долговечные, устойчивы к воздействию температуры, но обладают меньшей проводимостью;
  • арсенид галлия – дороже и сложнее кремниевых, высокая радиационная стойкость;
  • фосфид индия – в светодиодах и для работы на сверхвысоких частотах.
Популярные статьи  Бумажно-масляная изоляция - использование, достоинства и недостатки

Каждому материалу в разных системах соответствует своя буква или цифра, которую указывают в начале.

Есть два варианта конструкционного размещения катода и анода:

  1. Точечный диод. Один из электродов в виде узкой иглы вплавляется в кристалл, образуя p-n границу. Она имеет малую площадь, как следствие – высокая рабочая частота. Они почти вышли из применения по причине низкой прочности, уязвимости к перегрузкам и низкому максимальному току.
  2. Плоскостный диод. Область перехода больше – контакт проходит по площади пластинки полупроводника, соединяемой с кристаллом. Отличаются большей емкостью, низким уровнем помех, малым падением напряжения. Пример – диод Шоттки.

В современной маркировке разделение практически не встречается – плоскостные диоды постепенно вытесняют точечные.

Следующее обозначение зависит от назначения прибора. Существует классификация диодов, применяемых в разных областях: туннельные, лазерные, варикапы, стабилитроны. Внутри подтипа также есть разделение – уже по техническим параметрам:

  • рабочая частота;
  • время восстановления;
  • прямой и обратный ток;
  • допустимые значения обратного и прямого напряжения;
  • температурный режим.

Получается большое количество возможных сочетаний, отсюда – сложность создания единой системы маркировки.

Шаг 3: Питание

Лазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применение

Лазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применение

Следующий шаг — ограничитель тока (драйвер). К сожалению, не получится просто соединить диод батарейкой — он сразу же сгорит. Поэтому нам нужно собрать простую схему. Если, прежде чем посмотреть моё видео, вы уже гуглили что-то о том как сделать лазер из дисковода, то, вероятно, видели одну простую схему. Я не рекомендую так делать, так как эта схема 100% убьёт ваш диод, это всего лишь вопрос времени.

Для сборки правильной схемы нам понадобится всего два компонента: Чип LM317 (Ali) и резистор 3.3Ohm 2W (Ali). Я также использовал небольшой радиатор, но чип остается всегда холодным — вам он не понадобится.

Припаяйте резистор к первым двум клеммам LM317. Также припаяйте по проводу к первой и последней клемме — первый пойдёт на плюс лазерного диода, а третий на плюс блока питания, минус идёт прямо от батарейки на лазер. Один важный момент: так как я использовал новый диод, я был 100% уверен, что он выдержит силу тока, если вы не уверены в этом, то последовательно соедините два резистора на 3.3 Ohm — это обезопасит диоды практически от любого DVD привода. Для защиты от замыкания используйте термоусадку. Всё готово!

Разберемся: как это работает?

Представим себе плоский p-n-переход, смещенный в прямом направлении (рисунок 1). В этом случае происходит инжекция дырок в область n и наоборот – электронов в область p. Во время этого перехода в граничной (активной) области может произойти рекомбинация, которая будет сопровождаться испусканием кванта. Такое излучение называется спонтанным. На основе спонтанного излучения работают обычные светодиоды. Если же электрон и дырка находятся на близком расстоянии в активной зоне и через эту область пройдет квант света определенной (резонансной) частоты, то рекомбинация произойдет вынужденно. При этом выделится еще один квант света, с такими же параметрами, как и квант, вызвавший рекомбинацию. Для того чтобы увеличить вынужденную рекомбинацию торцы полупроводникового кристалла делаются параллельными и полируются (на рисунке 1 они обозначены как «оптически ровная грань»). Таким образом, создается так называемый оптический резонатор. Кванты, многократно отражаясь от полированных поверхностей, «летают» вдоль перехода, провоцируя процессы вынужденной рекомбинации. В конце концов, они выходят наружу в направлении строго перпендикулярном оптически ровным граням. Когда количество квантов появившихся в результате такой стимуляции значительно превысит количество появившихся спонтанно – начнется лазерная генерация.

Лазерные инфракрасные диоды - устройство и применение

Рисунок 1

Интенсивность излучения зависит от силы тока, протекающего через p-n-переход. При малых токах лазер работает, как малоэффективный обычный светодиод, поскольку происходят только спонтанные излучения. Когда ток превышает некоторое пороговое значение – излучение становится вынужденным и его мощность резко вырастает. Этот способ стимуляции лазерного излучения часто называют накачкой электрическим током. Существует также метод оптической накачки, когда атомы полупроводника возбуждаются квантами от мощного (не обязательно когерентного) излучателя.

Выходя из кристалла полупроводника когерентный свет, вследствие дифракции, рассеивается во все стороны. Поэтому для формирования узконаправленного пучка приходится применять собирающие линзы.

Диапазон длин волн, в котором возможно создание полупроводникового лазера охватывает большую часть видимого спектра, а также ближнюю и среднюю область инфракрасного диапазона.

Конечно, лазерный светодиод на сегодняшний день претерпел множество изменений и улучшений в своей конструкции, он уже представляет собой более сложную структуру, а не простой p-n-переход, но основной принцип его работы остался таким как описано выше.

Основными материалами, используемыми при производстве лазерных диодов, являются арсенид галлия GaAs, арсенид галлия алюминия AlGaAs, фосфид галлия GaP, нитрид галлия GaN, нитрид галлия индия InGaN и другие.

Лазерные инфракрасные диоды - устройство и применение

Рисунок 2

Лазерные светодиоды или полупроводниковые лазеры находят широкое применение в самых различных областях. Они применяются в волоконно-оптических системах связи, в считывателях штрих-кода. В различных бытовых устройствах: компьютерных мышках, проигрывателях компакт дисков, проекторах, ну и, конечно, в лазерных указках.

Лазерные мощные светодиоды используются для накачки твердотельных лазеров, позволяя получать очень высокий КПД.

Еще одно применение – лазерная спектроскопия, где применение лазеров дало возможность использования принципиально новых методов исследования веществ. Лазеры незаменимы в научных исследованиях, активно внедряются в медицине, как для диагностических, так и для терапевтических целей.

Типы корпусов для лазерных диодов

Широкое распространение лазерных диодов привело к появлению большого разнообразия корпусов, специализированных для определенных применений. Официальных стандартов по данному вопросу не существует, однако иногда крупные производители заключают соглашения об унификации корпусов. Кроме того существуют услуги по корпусированию излучателей по требованиям заказчика, поэтому перечислить все разнообразие корпусов затруднительно (miniBUT, miniDIL и т.д.). Точно также и распиновка контактов в знакомом корпусе может оказаться уникальной, поэтому назначение пинов перед покупкой у нового производителя всегда следует перепроверять. Также не следует ассоциировать внешний вид с длиной волны излучения, т.к. на практике излучатель с практически любой (в рамках ряда) длиной волны может быть установлен в любой из корпусов. Основные элементы лазерного модуля:

  • излучатель
  • термистор
  • элемент Пельтье
  • фотодиод
  • коллимирующая линза
  • оптический изолятор

Ниже перечислены корпуса, наиболее распространенные среди производителей.

С открытым излучением на выходе

TO-CAN

Корпусы данного типа предназначены для малого и среднего диапазона мощности излучения (до 250 мВт), т.к. не обладают специализированными теплоотводными поверхностями. Размеры варьируются от 3,8 до 10 мм. Число ножек от 3 до 4, коммутированы они могут быть различным образом, приводя в 8 типам распиновок.

DIL — Dual-In-Line

Лазерный диод в корпусе DIL и FC/APC коннектором

Лазерный диод в корпусе DIL — вид снизу

Использование данного корпуса обосновано для мощностей более 10 мВт (для различных длин волн это значение заметно варьируется), когда площади поверхности полупроводника недостаточно для отведения тепла. Более эффективный отвод тепла достигается за счет использования встроенного холодильника Пельтье, отводя тепло на противоположную по отношению к волоконному выходу грань алюминиевого корпуса. Пока температура корпуса при эксплуатации не изменяется, естественного воздушного охлаждения с поверхности достаточно. Для более мощных применений на основной теплоотводящей поверхности (противолежащей от волоконного выхода) устанавливают радиатор, для закрепления которого на корпусе предусмотрены ушки. Расположение ножек в 2 ряда с шагом 2,54 мм позволяет наряду с впаиванием использовать разъемные электрические соединения — колодка для электронных компонентов в корпусах DIP и колодка нулевого усилия ZIF.

Популярные статьи  Индуктивность проводника

DBUT — Dual-Butterfly

Самый распространненый корпус для лазерных диодов с мощностями от 10 мВт до 800 мВт и более. Основное отличие-преимущество перед DIL-корпусом — более эффективный теплоотвод за счет увеличенной площади контакта элемента Пельтье с корпусом лазерного модуля — основной теплоотводящей поверхностью является нижняя. Для этого электрические выводы были перенесены на боковые грани, что усложняет организацию разъемного соединения лазерного модуля с платой управления.

SBUT — Single-Butterfly

Односторонний вариант полного BUTTERFLY корпуса. Из-за вдвое меньшего количества выводов, отсутствует возможность использовать внутренний фотодиод.

Заключение

Подключая лазерный диод, необходимо помнить о безопасном обращении с ним, а также знать нюансы, которые присутствуют в его работе. После этого останется только подобрать понравившуюся схему и подключить полупроводник. Главное помните, что все контакты должны быть хорошо запаяны, иначе деталь может перегореть в процессе работы.

Козлов Сергей, uk8amk (at) mail.ru

В последнее время в продаже появились очень дешевые лазерные указки китайского производства. Они находят применение в самых различных областях радиолюбительского творчества. Однако, ввиду своего предельно упрощенного устройства, для питания от нормальных источников напряжения приходится прибегать к некоторым схемотехническим хитростям.

Рассмотрим схему самой обычной указки:

Лазерные инфракрасные диоды - устройство и применение

Как видно из рисунка она состоит из батареи на напряжение 4,5 вольта, выключателя, токоограничивающего резистора и лазерного диода. Как показала моя личная практика, при работе от собственных батареек указка не выходит из строя длительное время. При включении же от обычного источника это время уменьшается до 1-2 минут. Спалив десяток указок, я решил разобраться в чем тут дело. Перерыв кучу информации, я пришел к следующим выводам:

  • лазерный диод боится статического электричества;
  • лазерный диод боится микросекундных всплесков напряжения;
  • лазерный диод ну очень боится превышения рабочего тока.

Попытаюсь подробнее объяснить как с этим бороться.

  1. Заземляйте все и заземляйтесь сами. Если вы пользуетесь 220 вольтовым паяльником, то на время пайки лазера желательно паяльник отключать. Лучше пользоваться низковольтным паяльником. Также не помешает закорачивание выводов указки.
  2. Любое, даже небольшое и кратковременное, превышение напряжения питания приводит к перегоранию лазерного диода. Используйте стабилизаторы напряжения и конденсаторы большой емкости в паре с керамическими конденсаторами небольшой емкости(керамические хорошо фильтруют высокочастотные всплески). Не плохо подключать параллельно лазерной указке стабилитрон на напряжение 4,5-4,7 вольта. Все это защищает от нежелательных выбросов напряжения.
  3. С рабочим током ситуация следующая. Когда включается лазерный диод, он начинает греться. С повышением температуры увеличивается ток, протекающий через диод. При работе от «своих» батареек малой емкости с повышением тока сразу же падает напряжение, а с ним и ток. Поэтому с диодом не происходит ничего или почти ничего. Для питания от обычных источников нужно этот ток как-то стабилизировать. Здесь подходят схемы стабилизаторов тока, так называемые источники постоянного тока. Они держат ток нагрузки(в нашем случае лазера) на одном уровне. При уменьшении сопротивления диода снижается напряжение

Все эти рекомендации я постарался воплотить в следующей схеме:

Лазерные инфракрасные диоды - устройство и применение

Эту схему я использовал для домашнего лазерного шоу. Резистор R* нужно подобрать по току потребления лазера. Это делается следующим образом. Мультиметром замеряется ток потребления лазера от «своих» батареек. Затем по формуле R*=0.6/I1 (см.рис.) определяется сопротивление. Перед подключением лазера необходимо мультиметр установить на измерение тока и подключить вместо лазера. Мультиметр должен показать нужный ток. Только после этого можно подключать лазер.

Если нужно модулировать луч лазера, то можно использовать следующую схему:

Лазерные инфракрасные диоды - устройство и применение

В этом случае конденсатор 2200мкф нужно заменить на 470мкф или меньше, в зависимости от частоты модуляции.

На базу модулирующего транзистора через резистор 1к-2к подаются модулирующие импульсы положительной полярности(например, от TTL генератора на микросхеме К155ЛА3).

Транзисторы для стабилизатора и модулятора можно использовать любые кремниевые типа N-P-N

Перед началом работы я хочу предостеречь вас, сказав о том, что это действительно очень мощная вещь, которая может повредить ваши глаза, поэтому будьте осторожны.

Лазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применениеЛазерные инфракрасные диоды - устройство и применение

Основные выводы

То, что у любого диодного элемента есть анод и катод, знает большинство людей, показать их способны немногие. Зная все способы проверки, можно применять их по отдельности или комбинировать, так как ни один не идеален. Техническая документация и визуальный осмотр не позволяют определить работоспособность полупроводника. Тестер не всегда можно использовать для прозвона мощных источников света

Подключение к питанию дает самые точные результаты, но требует осторожности

Чтобы лучше запомнить, как определить расположение диодного элемента по схеме, придуман простой способ:

Кроме букв на изображении можно увидеть стрелки, ток течет именно туда, куда они направлены.

Током называется движение частиц в определенном направлении

Какие это частицы (молекулы, атомы, электроны, ионы, дырки), неважно. Важно знать другое – ток всегда течет от плюса к минусу

Плюс – это много, минус – мало.

Если для тестирования используется батарейка, необходимо знать, как на ней обозначается плюс и минус. Плюс – длинная и тонкая «палочка», минус – кроткая и толстая.

Анод полупроводника подключается к выводу, обозначенному длинной толстой «палочкой», катод – к выводу с короткой толстой. В анод ток входит, из катода выходит и возвращается на минус источника питания. При обратном подключении тока почти нет.

Если один из выводов полупроводника подключается к источнику переменного напряжения, из другого выходит ток с постоянным напряжением. Полярность зависит от того, как полупроводниковый элемент подключен. Если напряжение на аноде положительное, на выходе будет такое же. При положительном напряжении на катоде на выходе оно отрицательное.

Как вам статья?

Мне нравится11Не нравится14

Павел Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать Пишите свои рекомендации и задавайте вопросы

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: