Магнитное действие тока в картинках из старого диафильма

Магнитотерапия: споры и критика

К магнитотерапии у разных экспертов неоднозначное отношение. Некоторые исследования, например, опубликованное в British Medical Journal в 2006 году, прямо ставят под сомнение эффективность магнитотерапии при лечении любого заболевания.

Однако есть также данные, подтверждающие идею о том, что магнитотерапия может способствовать заживлению костей после перелома. В некоторых статьях, таких как опубликованная в La Revista Mexicana de Medicina Física y Rehabilitationación (Мексиканский журнал физической медицины и реабилитации, 2002 г.), исследователи продемонстрировали, как влияние магнитных полей может стимулировать рост костей и ускорять их восстановление.

Отсутствие крупных исследований не обязательно означает, что лечение магнитным полем не работает. Но как и любой вид терапии, использование магнитов должно проводиться строго по рекомендации и под наблюдением врача.  

Сила магнитного взаимодействия

Сила, действующая на проводник с током со стороны магнитного поля, была названа в честь первооткрывателя — силой Ампера. Эксперименты показали, что модуль силы Ампера F пропорционален длине проводника L и зависит от пространственного положения проводника в магнитном поле.

Для количественного описания действия магнитного поля на проводник с током была введена величина, названная магнитной индукцией B. Тогда сила Ампера будет равна:

$F = B*I*L$ (1),

где I — сила тока. Эта формула справедлива при вычислении модуля максимального значения силы Ампера, действующей на прямолинейный проводник в магнитном поле, вектор магнитного поля B направлен под 90 к вектору тока I.

Если проводник расположен под углом α к вектору магнитной индукции B, то вместо формулы (1) следует применять следующую формулу:

$F = B*I*L*sinα$ (2).

2 вариант

1. Проводник включен в работающую электрическую цепь. Какое поле существует вокруг него?

1) Электрическое
2) Магнитное
3) Электромагнитное
4) Поле в этом случае не возникает

2. Что служит источником электрического поля?

1) Электрический ток
2) Положительный электрический заряд
3) Отрицательный электрический заряд
4) Любой электрический заряд

3. Какова форма магнитных линий магнитного поля прямого проводника с током?

1) Замкнутые кривые вокруг проводника
2) Отходящие от проводника радиальные линии
3) Замкнутые кривые вокруг проводника, расположенные в перпендикулярных ему плоскостях
4) Концентрические окружности, охватывающие проводник

4. На каком рисунке представлена картина магнитного поля ка­тушки с током?

1) №1
2) №2
3) №3

5. На каком рисунке направление магнитных линий магнитного поля катушки с током показано стрелками неправильно?

Магнитное действие тока в картинках из старого диафильма

1) №1
2) №2
3) №3

6. Как можно усилить магнитное поле катушки с током?

1) Увеличить силу тока в ней
2) Сделать ее более длинной
3) Увеличить радиус катушки
4) Намотать провод на каркас менее плотно

7. Электромагнит удерживал притянувшийся к нему железный лом. При размыкании электрической цепи тот отпал от элек­тромагнита. Притянется ли он вновь, если цепь замкнуть, из­менив направление тока?

1) Нет
2) Да
3) Однозначный ответ дать нельзя

8. Какое из названных ниже веществ не притянется к маг­ниту?

1) Чугун
2) Кобальт
3) Стекло
4) Сталь

9. Магнитная буря — это

1) изменение магнитного поля Земли
2) неожиданное усиление магнитного поля планеты
3) резкое кратковременное изменение магнитного поля Земли
4) несуществующее явление

10. На каком рисунке изображена картина магнитного поля при взаимодействии одноименных полюсов магнитов?

Магнитное действие тока в картинках из старого диафильма

1) №1
2) №2
3) №3

11. На рисунках показаны две картины магнитных полей между полюсами магнитов. Определите их левый полюс.

1) На обоих рисунках — северный
2) На обоих рисунках — южный
3) На рис. №1 — южный, на рис. №2 — северный
4) На рис. №1 — северный, на рис. №2 — южный

12. Собрана электрическая цепь, в которой один проводник поме­щен между полюсами дугообразного магнита. При замыкании цепи он отклонился вправо, а экспериментатору надо было, чтобы проводник отклонился влево. Что ему надо для этого изменить?

1) Силу тока в цепи
2) Направление тока или расположение полюсов магнита
3) И направление тока, и расположение полюсов магнита
4) Напряжение на концах этого проводника

13. Будет ли двигаться проводник АВ, если ключ зам­кнуть? Почему?

1) Да, так как цепь будет замкнута
2) Нет, поскольку отсутствует магнитное поле
3) Да, потому что в проводнике АВ возникнет электриче­ский ток
4) Нет, так как включенный в цепь реостат уменьшит силу тока

14. Как — прямолинейно, криволинейно, поворачиваясь вокруг оси — может двигаться в магнитном поле рамка с током?

1) Прямолинейно
2) Криволинейно
3) Поворачиваясь вокруг оси
4) Ответ неоднозначен

15. По какому из названных здесь признаков электродвигатели превосходят тепловые двигатели?

1) Экологичности
2) Мощности
3) Массе
4) Размеру

Магнитное поле, создаваемое катушкой

Магнитное действие тока в картинках из старого диафильма

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит. Плунжер,находящийся внутри катушки, притягивается к её центру с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм. Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. 

Усиление обычного магнита

Множество вопросов возникает, когда обычные магниты перестают выполнять свои прямые функции. Это часто происходит из-за того, что бытовые магниты таковыми не являются, ведь, по сути, они намагниченные металлические части, которые теряют свойства с течением времени. Усилить мощность таких деталей или вернуть им свойства, которые были изначально, невозможно.

Популярные статьи  Собираем сумку домашнего электрика

Надо заметить, что прикреплять к ним магниты, даже более мощные, не имеет смысла, поскольку, при их соединении обратными полюсами, внешнее поле становится гораздо слабее или вообще нейтрализуется.

Это можно проверить с помощью обычной бытовой занавески-москитки, которая должна закрываться посередине при помощи магнитов. Если на слабые исходные магниты сверху прикрепить более мощные, то в результате штора вообще потеряет свойства соединения с помощью притяжения, потому что противоположные полюса нейтрализуют внешние поля друг друга на каждой из сторон.

Применение электромагнитов

Рассмотрим несколько примеров применения электромагнитов.

На рисунке 8 изображен дугообразный электромагнит. Он удерживает железную пластину (якорь) с подвешенным грузом.

Рисунок 8. Дугообразный электромагнит

Такие установки широко используются на заводах для перемещения различных изделий из металлов, сбора металлической стружки.

На рисунке 9 изображен в разрезе магнитный сепаратор для зерна.

Рисунок 9. Магнитный сепаратор для зерна

Принцип его работы очень прост. В собранное зерно добавляют очень мелкие железные опилки. Они не прилипают к гладким зернам злаков, но прилипают к зернам сорняков.

Из бункера 1 зерна с опилками высыпаются на вращающийся барабан 2. Внутри него находится мощный электромагнит 5. Он притягивает железные опилки, а вместе с ними и зерна сорняков. Так сепаратор очищает зерно.

Электромагниты также применяются во многих других устройствах. Некоторые из них мы рассмотрим ниже в данном уроке в разделе “Задания”.

Магнитная левитация

Было бы удивительно, если бы «поезда на магнитной подушке» обошли стороной полупроводниковое производство. Летают — в патентах, имеющих самое прямое отношение к этому производству . Правда, летают не поезда, а всего лишь унифицированная тара с кремниевыми пластинами (FOUP — front opening unified pod) — от одной операции к другой.

Магнитная левитация (рис. 2а) может быть реализована тремя способами: с использованием постоянного магнита, электромагнита или сверхпроводящего магнита. Использование электромагнитной левитации лимитируется материалами с высокой электрической проводимостью и низкотемпературными применениями. Имеется два основных типа магнитной левитации. К первому относятся электромагнитные системы (EMS), ко второму — электродинамические (EDS) .

В электромагнитных системах сила притяжения генерируется между нормальным электромагнитом и ферромагнитным проводником. Равновесное положение не стабильно. Чтобы гарантировать стабильность, необходимо использовать системы автоматического контроля и управления.

Электродинамическая левитация основана на возникновении в проводящих материалах вихревых токов. Вихревые токи могут быть индуцированы переменным магнитным полем. Часть электродинамических систем базируется на силах, возникающих при взаимодействии между магнитным полем, генерируемым сверхпроводящими магнитами, и стационарными катушками, расположенными в направляющем пути. Другие варианты электродинамических систем основаны на силах, генерируемых переменным током, который индуцирует вариации магнитного поля. В электродинамической левитации используются силы отталкивания. Как следствие, она пассивно стабильна.

Кроме того, известны гибридные системы. Системы левитации, использующие постоянные магниты, всегда гибридны, поскольку силы левитации, генерируемые постоянным магнитом, никогда полностью не стабильны во всех степенях свободы.

К сожалению, магнитная левитация применима только по отношению к магнитным материалам. Кремниевые пластины такими свойствами, увы, не обладают. А очень хотелось бы оперировать таким образом не только с FOUP. Как быть?

Самый простой путь — использовать посредник (магнитный посредник). В патенте приводится именно этот способ (рис. 3).

Полупроводниковая пластина по периферии снабжается прокладкой из магнитного материала, выполненной в виде кольца. Электромагнит формирует постоянное магнитное поле, взаимодействующее с магнитной прокладкой. Магнитное поле может изменять свое направление, чтобы поднимать или опускать кремниевую пластину.

Техническое решение, предложенное в патенте , по критерию «идеальность» стоит на ступеньку выше. Используются собственные ресурсы полупроводниковой пластины, а также ресурсы технологического процесса изготовления микросхем. Предлагается в полупроводниковой пластине на свободных местах фронтальной поверхности и/или на обратной стороне в едином технологическом цикле сформировать дополнительные микросхемы, включающие индуктивные катушки (источник магнитного поля). Единственное назначение этих микросхем (рис. 4) — взаимодействие с внешним магнитным полем.

Магнитного материала в кремниевой пластине нет, а магнитное поле образуется! Следовательно, используя внешнее магнитное поле, этой пластиной можно бесконтактно манипулировать. Как — это уже дело техники. Не правда ли, очень красивое техническое решение?

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе наиболее важными являются:

  • Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:
    B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int \limits _{L_{1}}{\frac {I\left({\vec {r}}_{1}\right){\vec {dL_{1}}}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
    B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int {\frac {{\vec {j}}\left({\vec {r}}_{1}\right)dV_{1}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
  • Теорема Ампера о циркуляции магнитного поля:
    ∮∂S⁡B→⋅dl→=μIS≡μ∫Sj→⋅dS→,{\displaystyle \oint \limits _{\partial S}{\vec {B}}\cdot {\vec {dl}}=\mu _{0}I_{S}\equiv \mu _{0}\int \limits _{S}{\vec {j}}\cdot {\vec {dS}},}
    rotB→≡∇→×B→=μj→.{\displaystyle \mathrm {rot} \,{\vec {B}}\equiv {\vec {\nabla }}\times {\vec {B}}=\mu _{0}{\vec {j}}.}

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{\displaystyle {\vec {B}}}:

Три из четырех уравнений Максвелла (основных уравнений электродинамики)

divE→=ρε,   rotE→=−∂B→∂t{\displaystyle \mathrm {div} \,{\vec {E}}={\frac {\rho }{\varepsilon _{0}}},\ \ \ \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}}
divB→=,    rotB→=μj→+1c2∂E→∂t{\displaystyle \mathrm {div} \,{\vec {B}}=0,\ \ \ \ \,\mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}}
а именно:

Закон отсутствия монополя:

divB→=,{\displaystyle \mathrm {div} \,{\vec {B}}=0,}
Популярные статьи  Влияние изменения частоты на работу электрических систем

Закон электромагнитной индукции Фарадея:

rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},}

Закон Ампера — Максвелла:

rotB→=μj→+1c2∂E→∂t.{\displaystyle \mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}.}

Формула силы Лоренца:

F→=qE→+qv→×B→,{\displaystyle {\vec {F}}=q{\vec {E}}+q\left,}
Следствия из неё, такие как

Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)

dF→=Idl→×B→,{\displaystyle d{\vec {F}}=\left,}
dF→=j→dV×B→,{\displaystyle d{\vec {F}}=\left,}

выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):

M→=m→×B→,{\displaystyle {\vec {M}}={\vec {m}}\times {\vec {B}},}

выражение для потенциальной энергии магнитного диполя в магнитном поле:

U=−m→⋅B→,{\displaystyle U=-{\vec {m}}\cdot {\vec {B}},}
  • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
  • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
F→=Kqmr→r3.{\displaystyle {\vec {F}}=K{\frac {q_{m}{\vec {r}}}{r^{3}}}.}

(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).

Выражение для плотности энергии магнитного поля

w=B22μ{\displaystyle w={\frac {B^{2}}{2\mu _{0}}}}

Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Что такое магнитотерапия?

Магнитотерапия — одна из физиотерапевтических методик восстановления здоровья, известная своими обезболивающими, противовоспалительными и дренирующими свойствами. Используется для лечения широкого спектра проблем со здоровьем (хроническая боль, мигрень, бессонница и т. д.). 

Суть в том, что в цилиндрическое устройство пациент вставляет, например, руку или ногу, и в процессе такой терапии магнитные волны проходят через определенную часть тела, достигая самых глубоких слоев.

При проведении магнитной терапии используются аппараты разной  интенсивности:

  1. Низкочастотные.  В этом случае магнитные поля имеют мощность от одной до ста герц и особенно подходят для лечения хронических заболеваний и общих недугов, так что аппарат можно использовать для любой части тела.

  2. Высокочастотные. Такие устройства превышают мощность в сто герц и применяются к локализованным недугам и заболеваниям таким образом, что они оказывают более глубокое, но менее обширное воздействие. Они особенно показаны при местной и острой боли.

Считается, что магнитные поля действуют на систему кровообращения, нервную и эндокринную системы. 

Виды поражения электрическим током

Различают:

  • термическое;
  • электролитическое;
  • биологическое.

Термическое

Тепловое действие тока

Во время неосторожного касания оголённого токопровода возрастает риск получить ожоги кожи разной степени. Термическое действие большого тока вызывает сильный нагрев кровеносных сосудов

Это приводит к потере функциональности. Органы перестают полноценно работать.

Дополнительная информация. Электроожоги принимают более тяжёлую форму, чем поражение от открытого огня. Лечат их особым способом по специальной методике.

Электролитическое

Электролитическое поражение воздействует на состав крови так, что она теряет свои свойства и распадается на несколько фракций. Спасти может только срочное переливание крови.

Биологическое

Биологическое воздействие тока на тело человека нарушает нормальную работу мышечной массы. Опасность состоит в том, что перестаёт двигаться диафрагма, и пострадавший погибает от удушья.

Сила Ампера

Сила, с которой магнитное поле действует на помещенный в него проводник с током, называется силой Ампера.

Величина этой силы, действующей на элемент Δl проводника с током I в магнитном поле с индукцией \(~\vec B\) , определяется законом Ампера:

\(~\Delta F = B \cdot I \cdot \Delta l \cdot \sin \alpha\) , (1)

где α – угол между направлениями тока и вектора индукции.

Направление силы Ампера можно найти с помощью правила левой руки (рис. 1):

Рис. 1

если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали по направлению с направлением тока, то отогнутый на 90° большой палец укажет направление силы, действующей на элемент проводника.

Использование этого правила затруднительно лишь в том случае, когда угол α мал. Поскольку, однако, величина B∙sin α представляет собой модуль перпендикулярной проводнику с током компоненты вектора индукции \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой – она должна входить в открытую ладонь левой руки.

Рис. 2

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Закон Ампера выполняется для любого магнитного поля. Предположим, что это поле создается длинным линейным проводником с током I2, параллельным первому проводнику c током I1 и находящимся на расстоянии r от него. Тогда индукцию магнитного поля в точках расположения первого проводника можно определить (с учетом замены II2) по формуле:

\(~B = \frac{\mu_0 \cdot I}{2 \pi \cdot r} = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r}\) .

Подставляя это выражение в (1) и замечая, что в рассматриваемом случае параллельных проводников α = 90°, находим силу, действующую на линейный элемент Δl первого проводника,

\(~\Delta F = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r} \cdot I_1 \cdot \Delta l = \mu_0 \cdot \frac{I_2 \cdot I_1 \cdot \Delta l}{2 \pi \cdot r} \) . (2)

Совершенно ясно, что точно такое же выражение можно записать для силы, действующей на второй проводник. Используя правило буравчика (для определения магнитной индукции проводника с током) и правило левой руки (для определения силы, действующей на проводник с током), можно убедиться в том, что если токи в проводниках текут в одинаковых направлениях, то эти проводники притягиваются (рис. 3 а, б), а если в разных – отталкиваются (рис. 4, а, б), что и подтверждается опытом.

Популярные статьи  Нагревательные элементы для зеркала, стиральной машины, электроплиты

Рис. 3

Рис. 4

Выражение (2) было положено в основу принципа определения единицы силы тока. Если в (2) считать I1 = I2 = 1 А, r = 1 м, Δl = 1 м, то получим F = 2∙10-7 Н/м. Другими словами,

если по двум параллельным, бесконечно длинным линейным проводникам, расположенным на расстоянии 1 м друг от друга, текут одинаковые токи в 1 А, то эти токи взаимодействуют с силой 2∙10-7 Н на каждый метр длины проводников.

Заметим, что единица силы тока – ампер – в СИ принадлежит, наряду с секундой, метром, килограммом, кельвином, молем и канделой, к числу основных единиц измерения физических величин.

Электромагниты в повседневной жизни

Электромагниты часто используются для хранения информации, так как многие материалы способны поглощать магнитное поле, которое может быть впоследствии считано для извлечения информации. Они находят применение практически в любом современном приборе.

Где применяют электромагниты? В быту они используются в ряде бытовых приборов. Одной из полезных характеристик электромагнита является возможность изменения магнитной силы, при изменении силы и направление тока, текущего через катушки или обмотки вокруг него. Колонки, громкоговорители и магнитофоны — это устройства, в которых реализуется этот эффект. Некоторые электромагниты могут быть очень сильными, причем их сила может регулироваться.

Где применяют электромагниты в жизни? Простейшими примерами служат дверные звонки и электромагнитные замки. Используется электромагнитная блокировка для двери, создавая сильное поле. Пока ток проходит через электромагнит, дверь остается закрытой. Телевизоры, компьютеры, автомобили, лифты и копировальные аппараты — вот где применяют электромагниты, и это далеко не полный список.

Магнитное действие тока в картинках из старого диафильма

Магнитный поток

Магнитный поток – это скалярная величина, которая характеризует влияние магнитной индукции на данный металлический контур.

Магнитная индукция определяется количеством силовых линий, пересекающих 1 см2 металлического сечения.

Магнитометры, используемые для его измерения, называются теслометрами.

Абрамян Евгений Павлович Доцент кафедры электротехники Санкт-Петербургского государственного политехнического университета Единицей измерения магнитной индукции в системе СИ является Тесла (Тл).

После прекращения движения электронов в катушке сердечник, если он сделан из мягкого железа, теряет свои магнитные свойства. Если он изготовлен из стали, он может некоторое время сохранять свои магнитные свойства.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентирован по магнитному меридиану Земли. Конец, указывающий на север, называется северным полюсом (N), а противоположный конец – южным полюсом (S). Поднося два магнита ближе, мы замечаем, что одноименные полюса отталкиваются друг от друга, а противоположные – притягиваются (рис. 1).

Если мы разделим полюса, разрезав постоянный магнит на две части, мы обнаружим, что каждая из них также будет иметь по два полюса, то есть это будет постоянный магнит (рис. 2). Оба полюса – север и юг – неотделимы друг от друга, равны.

Магнитное поле, создаваемое Землей или постоянными магнитами, представлено, как электрическое поле, магнитными силовыми линиями. Изображение силовых линий магнитного поля магнита можно получить, положив поверх него лист бумаги, на который ровным слоем насыпают железные опилки. Попадая в магнитное поле, опилки намагничиваются: у каждого из них есть северный и южный полюс. Противоположные полюса имеют тенденцию сближаться, но этому препятствует трение опилок о бумагу. Если вы коснетесь бумаги пальцем, трение уменьшится, и опилки будут притягиваться друг к другу, образуя цепочки, которые представляют собой силовые линии магнитного поля.

На рис. 3 показано положение в поле прямого магнита из опилок и маленькие магнитные стрелки, указывающие направление силовых линий магнитного поля. Это направление принимается за направление северного полюса магнитной стрелки.

Виды

Электромагниты бывают следующих видов:

  • Нейтральные постоянного тока. В таком устройстве магнитный поток создается посредством постоянного электрического тока, пропущенного через обмотку. А значит, сила притяжения такого электромагнита варьируется в зависимости только от величины тока, а не от его направления в обмотке.
  • Поляризованные постоянного тока. Действие электромагнита подобного рода основано на наличии двух независимых магнитных потоков. Если говорить о поляризующем, то его наличие создается обычно постоянными магнитами (в редких случаях — дополнительными электромагнитами), и нужен он для создания притягивающей силы при выключенной обмотке. А действие такого электромагнита зависит от величины и направления электрического тока, который движется в обмотке.
  • Переменного тока. В таких устройствах катушка электромагнита питается электричеством переменного тока. Соответственно, с определенной периодичностью магнитный поток меняет свое направление и величину. А сила притяжения варьируется лишь по величине, из-за чего она «пульсирует» от минимального до максимального значения с частотой, которая имеет двукратную величину по отношению к частоте питающего ее электрического тока.

С тем, какие их виды бывают, уже мы ознакомились. Теперь же рассмотрим примеры использования электромагнитов.

Как сделать электромагнит 12в

Самый просто способ, как сделать электромагнит, – это взять обычный гвоздь, провод и батарейку. По всей длине стержня наматывают изолированный провод. Концы проводника прижимают к полюсам батарейки. Для того чтобы заряд не расходовался зря, один конец провода припаивают к положительному контакту. Другое окончание нужно делать в виде подпружиненной дуги, которую прижимают к клемме батарейки со знаком минус. На нижнем фото видно, как можно сделать электромагнит в домашних условиях.

Магнитное действие тока в картинках из старого диафильма

Обратите внимание! При изготовлении электромагнита с батарейкой можно использовать контактную колодку со старого устройства. Для отключения магнита будет достаточно вынуть батарейку из контактной коробки

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: