Калькулятор маркировки smd-резисторов

Маркировка SMD-резисторов: хитрости вычисления номинала

Аббревиатура SMD часто встречается при монтаже или изучении электронных схем. Это определённый тип компонентов, пришедших на замену классической сквозной пайке. Так как  размеры SMD-составляющих значительно отличаются от обычных, то и маркировка на них используется другая. В этой статье мы расскажем, как прочитать маркировку SMD-резисторов, что это вообще такое, и какие способы определения номинала существуют.

Что такое SMD

SMD – английская аббревиатура, обозначающая Surface Mounted Device, то есть – устройство, монтируемое на поверхность. В целом, под SMD понимается метод нанесения компонентов на печатную плату, который ещё называют поверхностным. Ему противопоставляется классический метод — сквозной монтаж, когда ножки элементов продеваются в отверстия монтажной платы и фиксируются в них.

SMD подразумевает установку прямо на токопроводящие дорожки платы. Такой подход позволил значительно сэкономить место на плате, уменьшить размер компонентов и, в целом, удешевить и автоматизировать процесс монтажа. Тем не менее, на практике часто встречается гибрид обеих технологий — сквозного монтажа и поверхностного.

Назначение резисторов

Назначение SMD-резисторов то же самое, что и  у обычных — преобразование силы тока в напряжение и наоборот с помощью имеющегося у него сопротивления. Таким образом, основная величина, по которой можно определить нужный резистор — сопротивление. Измеряется оно в Омах. Соответственно, при маркировке на элементе указывается именно количество Ом.

Размеры и обозначения

SMD-резисторы имеют компактные размеры. Самый маленький типоразмер может быть всего 0,4×0,2 мм. Поэтому от стандартной цветовой маркировки решили отказаться. Вместо неё сейчас используется три разных типа обозначений: 3 цифры, 4 цифры и 2 цифры и буква. Но логика распознавания элемента у них одна.

3 и 4 цифры

Всё довольно просто и логично — есть три цифры. Две первые — мантисса, третья — степень, в которую нужно возвести число 10 для получения множителя. Перемножив это всё, получим итоговое сопротивление.

Например, на резисторе стоит 312. 31 — основание, 2 — степень числа 10. В итоге, получается нехитрое выражение 31·10² или 31·100 = 3100 Ом. На самом деле, чтобы не проводить всех этих математических операций, можно просто запомнить, что к  первым двум цифрам нужно прибавить указанное третьей цифрой количество нулей. То есть, к 31 просто добавить два нуля.

Маркировка с четырёхзначными числами не отличается методом расшифровки. Просто применяются они для резисторов с точностью в 1%. Например, 7920 будет обозначать всего 792 Ом, так как 10° = 1, и после умножения получаем 792. Или используя более простую методику — после 792 нужно добавить 0 нулей, то есть ни одного.

Цифры и буквы в обозначениях

Тут всё немного усложняется. Во-первых, встречается два вида обозначений: сначала цифры, потом буква и наоборот. Первый используется для маркировки элементов с точностью 1% из номинального ряда Е96. Второй встречается на компонентах с точностью 2%, 5% и 10% из номинальных рядов Е12 и Е24.

Обозначение с двумя цифрами и буквой чем-то похоже по логике на простые цифровые обозначения. Но, так как номиналы сопротивлений берутся из номинального ряда Е96, то закономерности в символах обнаружить не удастся, понадобится таблица. Итак, первые две цифры обозначают код, согласно которому в таблице нужно найти соответствующую мантиссу. Буква — это степень десяти. Вариантов здесь немного и есть хоть какая-то логика: S или Y дают 10־², R или X – 10־¹. Затем по нарастанию: А — 10°или 1, B – 10¹, C – 10² и так далее.

Например, имеем резистор 49R. Смотрим в таблицу — получаем мантиссу 316. Литера R говорит нам, что степень десяти равна -1. То есть, нужно не умножать на 10, а, наоборот — разделить. В итоге, получаем значение 31,6 Ом.

Второй вариант цифро-буквенных обозначений подчиняется тому же принципу, только здесь в цифровом коде ещё зашифрована точность резистора.

Как видно, способ маркировки только цифрами гораздо удобнее и проще, хотя и не позволяет обозначить некоторые номиналы резисторов.

Онлайн-сервисы

На сайте можно узнать номинал резистора, и, наоборот, как будет выглядеть маркировка для определённого сопротивления.

https://www.asutpp.ru/kalkulyator-markirovki-smd-rezistorov.html  — аналогичный сервис, с тем же функционалом.

Тоже самое делает сервис https://allcalc.ru/node/940. В общем, подобных инструментов в сети предостаточно.

ИнженерияОбзор системы тёплый пол Devi: особенности, плюсы и минусы

ИнженерияВиды шаровых муфтовых кранов: назначение, устройство, некоторые модели

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Стандартный ряд мощностей резисторов и их обозначение на схемах

Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса

Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.

Вт Условное обозначение не схемах
мощность резистора 0,05 Вт Как обозначается на схеме мощность рассеивания резистора 0,05 Вт
мощность резистора 0,125 Вт Мощность резистора 0,125 Вт на схеме
мощность резистора 0,025 Вт Как на схеме выглядит резистор мощностью 0,25 Вт
мощность резистора 0,5 Вт Так на схеме обозначается резистор мощностью 0,5 Вт
мощность резистора 1 Вт Мощность резистора 1 Вт схематически обозначается так
мощность резистора 2 Вт Рассеиваемая на резисторе мощность 2 Вт
мощность резистора 5 Вт Обозначение на схеме мощности резистора 5 Вт

Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления. Самое малое стандартное значение 0,05 Вт, самое большое — 25 Вт, но есть и более мощные. Но это уже специальная элементная база и в бытовой аппаратуре не встречается.

Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах. Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д. Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.

Популярные статьи  Ремонт кабельных линий

Допустимое отклонение от номинального значения

Конечно, можно сделать резистор с очень точным значением сопротивления, однако он будет очень дорогим. К тому же, очень точные и дорогие резисторы бывают нужны достаточно редко, например, в качестве делителей напряжения в мультиметрах. Здесь мы поговорим о недорогих и не очень точных резисторах, используемых в электронных устройствах. В большинстве случаев точность ±20% вполне допустима. Для резистора сопротивлением 1 кОм это означает, что любой резистор с сопротивлением в диапазоне от 800 Ом до 1200 Ом будет считаться резистором 1 кОм. Допуск на некоторые особо критичные компоненты может быть ±1% или даже ±0.05%. В то же время следует отметить, что в наше время сложно найти резисторы с допуском 20%. Обычными являются 5-процентные и 1-процентные резисторы. Такие резисторы были дорогими 60 лет назад, во времена ламповых и первых транзисторных радиоприемников. Но те времена остались в далеком прошлом.

Сравнение 0,1-ваттных резисторов для поверхностного монтажа в корпусе 1608 (1,6 × 0,8 мм) с 10-ваттным керамическим резистором сопротивлением 1 Ом

SMD резисторы – маркировка кодов SMD резисторов

SMD резисторы – маркировка чип-резисторов

SMD резисторы – маркировка которых интересует многих радиолюбителей. Данные резисторы изготавливаются в миниатюрных корпусах, сделанных как правило из керамики и предназначенные для поверхностного монтажа. Этот элемент является самым распространенным компонентом в современных радиоэлектронных схемах.

Различные компании, производящие SMD резисторы, делают много всевозможных модификаций своей продукции, кодовые обозначения, которых имеют отличие от других. В связи с этим, электронщикам, которым приходится часто выполнять ремонт электронной техники или заниматься сборкой печатных плат, нужно четко знать кодовые обозначения резисторов.

Предназначение чип-резисторов

Основная функция резисторов в схеме – это токоограничение в конкретной части электрического тракта.

Один из ближайших примеров, которым можно показать резистор в действии – это включение сопротивления в питающую цепь LED-диодов либо в эмиттерную цепь биполярного транзистора установленного в усиливающем каскаде. Приведенная ниже таблица окажет вам существенную помощь в расшифровке кодовых обозначений.

Таблица расшифровки номинальных значений SMD резисторов

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом

  Биполярные и полевые транзисторы — Datasheet 5 часть

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
102 1 кОм 103 10 кОм 104 100 кОм 105 1 МОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 МОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 МОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 МОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 МОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 МОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 МОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 МОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 МОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 МОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 МОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 МОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 МОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 МОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 МОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 МОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 МОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 МОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 МОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 МОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 МОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 МОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 МОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 МОм
Популярные статьи  Блуждающие токи

  Флеш память популярных микросхем

Маркировка SMD резисторов

Маркировка SMD-компонентов

Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали.

Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку.

Что собой представляет маркировка smd резисторов

Резисторы smd – это постоянные детали, которые необходимы для поверхностного монтажа на плату. Если сравнивать smd резисторы и металлопленочные резисторы, то первые будут в несколько раз меньше, но есть и такие которые имеют большие размеры, именно поэтому существует маркировка smd резисторов. По форме они также отличаются, есть квадратные, прямоугольные и круглые и даже овальные. Внимательно изучая смд резистор маркировку, можно отметить, что маркировка бывает цифровая или буквенная.

Главным отличием смд резисторов является наличие небольших контактов, которые вставляются в печатную плату. Рассмотрим, для чего нужна маркировка резисторов.

Для чего нужна маркировка резисторов

Учитывая тот факт, что смд резисторы имеют небольшой размер, на них нельзя нанести цветовую маркировку, поэтому производителями был разработан иной способ маркировки. Как правило, обозначение smd резисторов содержат три или четыре цифры, могут присутствовать буквы.

  1. Цифровая маркировка резисторов необходима для того, чтобы указывать на численное значение сопротивления резистора, последняя цифра является множителем. Она же может указывать на степень, которую надо возвести 10, чтобы получить окончательный результат. Например, определить сопротивление можно таким образом: 450 = 45 х 10равно 45 Ом.
  2. Если маркировка имеет вид EIA-96, то это означает, что резисторы высокой точности. Этот стандарт предназначается для резисторов, которые имеют небольшое сопротивление в 1%. Такая система маркировки имеет три элемента: 2 цифры, которые указывают на код номинала, а буквы являются множителем. Цифры – это код, которое дает число сопротивления. Например, код 04 может указывать на 107 Ом.

Для удобного расчета применяется калькулятор, который поможет быстро найти величину сопротивления. Для расчета надо ввести код, который есть на компоненте и сопротивление сразу отобразиться внизу. Такой калькулятор подходит не только для стандарта. Чтобы более точно проверить сопротивление, лучше всего для расчета применять мультиметр. Какой лучше мультиметр выбрать, читайте здесь.

Какие характеристики показывает

Самой главной характеристикой деталей является величина номинального сопротивления, допуск на величину и коэффициент температуры. С любой из этих характеристик связана мощность smd резисторов и сопротивление между ним и окружающей температурой. В некоторых областях учитываются даже шумовые характеристики.

Чтобы подробно разобраться в этом вопросе, надо внимательно изучить все характеристики:

  1. Величина номинального сопротивления. Допуск на величину номинального сопротивления задается в процентах. Такое значение указывает на сопротивление резистора при внешних воздействиях на него.
  2. Температура. Как правило, естественной температурой считается +20°С и должно быть нормальное атмосферное давление. СМД резисторы выпускаются с допуском на номинальное сопротивление в пределах от ±0.05% до ±5%.
  3. Точность. Самыми точными резисторами можно считать те, которые высчитываются по формуле ТКС=DR/(R*DТ). DR означает изменение сопротивления при перемене температуры на величину DТ, R – номинальное значение сопротивления.

Если компоненты можно просчитать по этой формуле, то это означает, что они обладают наивысшей точностью.

Как правильно подобрать SMD резистор

Резисторы, которые изготовляются по технологии surface mount device или кратко SMD устанавливаются на поверхность платы, чаще всего при помощи паяльника присоединяются к печатным проводникам. Технология именно такого монтажа дала возможность привести к автоматизму установки компонентов, при этом применяются разные способы пайки. Используя конденсаторы SMD можно уменьшить размеры аппаратуры, а также сократить время на изготовление элемента.

Учитывая, что разновидностей существует много, необходимо знать, как их выбирать. В первую очередь стоит по достоинству оценить их преимущества и недостатки. Также нельзя выбирать компонент, не зная особенностей его применения и области, в которой он может пригодиться.

Рассматривая каждый резистор в отдельности, можно говорить о том, что он представляет собой двухвыводный компонент, который применяется для ограничения тока, распределения напряжения и формирования временных характеристик цепи. Вместе с пассивными компонентами применяются активные – это операционные контролеры, интегральные схемы, которые необходимы для того, чтобы контролировать и осуществлять смещение, фильтрацию и ввод-вывод.

Если используются переменные конденсаторы, то они необходимы исключительно для изменения параметров схемы. Такие компоненты чувствительны к току и измеряют напряжение в цепях. Что касается материала, из которого они могут изготавливаться, то тут выбор также огромен, применяется для изготовления: металлофольга, керамика, варистор, металлические, имеются фоторезисторы.

Естественно, что лучше всего выбирать наиболее точные компоненты, которые отличаются эксплуатационными характеристиками, подбирать габариты. Следует четко понимать, что какие бы технические характеристики не использовались в качестве увеличения мощности, есть еще такое понятие, как отвод тепла. Некоторые детали могут работать при больших температурах, но энергию тепла отводить необходимо. Тогда дополнительно к таким резисторам предъявляются еще и дополнительные требования в отношении монтажа на плату. Чаще всего для отвода тепла применяются контакты медных проводников, за счет этого поверхность платы может охлаждаться.

Бывает так, что в печатных платах под поверхностный монтаж элементов отводят толщу платы и специальные оборудуют медные полигоны, которые выступают в роли радиатора. Иногда, оказывается, невозможно поступить по другому, кроме как применить принудительное внешнее охлаждение, например, устанавливаются микро – вентиляторы. Среди большого выбора следует подобрать компонент, который необходим.

Популярные статьи  Линии напряженности электрического поля

Проволочные резисторы

Рис. 4. Проволочный резистор

Проволочные резисторы (Рис. 4) конструктивно представляют собой высокоомный провод, намотанный на изолирующий сердечник. Они отличаются очень высокой номинальной мощностью (до 1000 Вт) и способны работать при очень высоких температурах (до 300°C). Проволочные резисторы характеризуются отличной долговременной стабильностью – около 15…50 ppm/год, в то время как, например, у металлопленочных резисторов этот показатель составляет 200…600 ppm/год. Данный тип резисторов обладает самым малым уровнем шума.

Недостатки: диапазон доступных сопротивлений для проволочных резисторов оказывается достаточно узким (0,0001…100 кОм). Поскольку резистор выполнен в виде проволоки, намотанной на основание, то такая конструкция характеризуется высокой паразитной индуктивностью. По этой причине в высокочастотном диапазоне проволочные резисторы демонстрируют наихудшие показатели среди всех типов резисторов. Они также оказываются более дорогими по сравнению с другими популярными типами резисторов.

Приложения: обычно используются в автоматических выключателях и в качестве предохранителей благодаря высокой мощности.

Примеры

  • серия KNP500 производства компании Yageo с номинальной мощностью 5 Вт и диапазоном доступных сопротивлений 0,1 Ом …2,2 кОм;
  • серия HS-25 производства Ohmite с номинальной мощностью 25 Вт и диапазоном доступных сопротивлений 0,01 Ом … 5,6 кОм;
  • серия HSC100 от TE с номинальной мощностью 100 Вт и диапазоном доступных сопротивлений 0,1 Ом … 50 кОм.

Термисторы

Рис. 6. Термистор

Термисторы – это резисторы, сопротивление которых значительно изменяется при изменении температуры (Рис. 6).

Сопротивление NTC-термисторов плавно уменьшается при увеличении температуры. NTC являются готовыми датчиками температуры с диапазоном измерений -55… +200°C.

PTC-термисторы характеризуются скачкообразным изменением сопротивления при определенной температуре. Они применяются в качестве элементов защиты от перегрузки по току.

Ток удержания PTC (hold current) – это ток, при котором термистор гарантированно находится в проводящем состоянии.

Ток срабатывания PTC (trip current) – это ток, при котором термистор гарантированно переходит в непроводящее состояние.

Примеры

  • PTC-термисторы:
  • 1812 — серия MF-MSMF производства компании Bourns для рабочих токов от 0,3…5,2 А;
  • 1812 — серия 1812L от Littelfuse для рабочих токов 0,1…3,5 А.

NTC-термисторы:

  • серия B57236 от EPCOS с диапазоном сопротивлений 2,5…120 Ом;
  • 0603 — серия ERT-J1 от Panasonic с диапазоном сопротивлений 0,022…150 кОм.

Выводные резисторы для монтажа в отверстия

Рис. 3. Выводные резисторы для монтажа в отверстия

Резисторы с аксиальными выводами для монтажа в отверстия (Рис. 3) весьма популярны и широко используются, особенно — при создании прототипов, поскольку их легко заменять при работе с макетными платами. Как и чип-резисторы, выводные резисторы применяются для подтяжки, деления напряжения, ограничения тока и фильтрации. Существуют различные типы выводных резисторов. Наиболее популярны углеродистые пленочные и металлопленочные резисторы.

  1. Углеродистые пленочные резисторы имеют значительный разброс сопротивлений (2…10%). Наиболее распространенными рядами сопротивлений для них являются E12 (± 10%), E24 (± 5%) и E48 (± 2%). В большинстве приложений углеродистые пленочные резисторы были вытеснены металлопленочными. Температурный коэффициент сопротивления углеродистых пленочных резисторов (TКC) обычно имеет отрицательную величину — около -500 ppm/C, однако конкретное значение зависит от сопротивления и размера.
  2. Металлопленочные резисторы имеют меньший разброс сопротивлений (0,1…2%) и более высокую стабильность. Наиболее распространенными рядами сопротивлений для них являются E48 (± 2%), E96 (± 1%) и E192 (± 0,5%, ± 0,25% и ± 0,1%). Поскольку характеристики металлопленочных резисторов лучше, чем у углеродистых, то именно они используются в большинстве приложений. Температурный коэффициент металлопленочных резисторов (TC) составляет около ± 100 ppm/C, однако некоторые модели характеризуются только положительным или только отрицательным TC.
  3. Углеродные композитные резисторы широко использовались в электронных устройствах пятьдесят лет назад, но из-за большого разброса номиналов и невысокой стабильности они были заменены углеродистыми пленочными и металлопленочными резисторами. Тем не менее, композитные резисторы обладают хорошими высокочастотными характеристиками и способны выдерживать воздействие мощных импульсов, поэтому их до сих пор применяют в сварочном оборудовании и высоковольтных источниках питания.
  4. Металл-оксидные резисторы стали первой альтернативой углеродным композитным резисторам, но в дальнейшем в большинстве приложений они были вытеснены металлопленочными. Тем не менее, поскольку металл-оксидные резисторы отличаются повышенной рабочей температурой и более высокой номинальной мощностью (> 1 Вт), их по-прежнему используют в ответственных устройствах, эксплуатирующихся в жестких условиях.

Ряды сопротивлений EIA (EIA Decade Resistor Values) определяют не только номиналы резисторов, но и допустимую погрешность. Например, ряд E12 (± 10%) включает следующие стандартные значения: 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, 680 и 820 Ом.

Для кодирования параметров выводных резисторов применяется цветовая маркировка (таблица 1).

Таблица 1. Цветовая маркировка выводных резисторов

Цвет Значение
Первая цифра Вторая цифра Третья цифра* Множитель Точность Температурный коэффициент, ppm/C Рейтинг отказов
Черный x10^0
Коричневый 1 1 1 x10^1 ±1% 100 1%
Красный 2 2 2 x10^2 ±2% 50 0,1%
Оранжевый 3 3 3 x10^3 15 0,01%
Желтый 4 4 4 x10^4 25 0,001%
Зеленый 5 5 5 x10^5 ±0,5%
Синий 6 6 6 x10^6 ±0,25%
Фиолетовый 7 7 7 x10^7 ±0,1%
Серый 8 8 8 x10^8 ±0,05%
Белый 9 9 9 x10^9
Золотой x0,1 ±5%
Серебряный x0,01 ±10%
Пусто ±20%
* Только для резисторов с 5-позиционной маркировкой

Примеры:

  • углеродистые пленочные резисторы серии CFR-25JB производства Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • металлопленочные резисторы серии MFR-25FBF от Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 10 Ом…1 МОм;
  • металлопленочные резисторы серии PR02 от VISHAY с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,33 Ом…1 МОм.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: