Онлайн калькулятор расчета реактивного сопротивления

Формула расчета реактивного сопротивления

В общем случае для деталей катушечного типа применяются выражения:

X = L*w = 2* π*f*L.

Для конденсаторов применяют формулы:

X = 1/(w*C)= 1/(2* π*f*C).

Для конкретного элемента, нужные параметры которого известны, величина может быть вычислена с использованием онлайн калькулятора. В форму потребуется ввести нужные данные и нажать на кнопку, инициирующую расчеты.

Умение рассчитывать данную составляющую сопротивляемости поможет узнать величину тепловых потерь на используемых нагрузках. При параллельном подсоединении конденсатора с подходящей емкостью можно решить проблему энергетических потерь на индуктивных нагрузках.

Мощность в цепи с реактивными радиоэлементами

При подключении таких элементов в цепь в четных четвертях периода мощность будет иметь отрицательное значение (в это время компонент направляет накопленную энергию в источник напряжения). В итоге использование энергии элементом за весь цикл оказывается равным нулю. Это означает, что на нем не происходит выделения энергии, так что на электросхемах такие детали изображаются холодными. На деле положение вещей может быть немного иным (это зависит от параметров конкретного элемента), бывает, что небольшие тепловые потери на конденсаторе или соленоиде все-таки имеют место. Но они не будут значительными, измеряющимися в кв.

Формулы для реактивной мощности

Q = U I sinθРеактивная мощность = √ (Полная мощность2 – Активная мощность2)вар =√ (ВА2 – P2)квар = √ (кВА2 – кВт2)Полная мощность (S) Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Индуктивный элемент L

Индуктивный элемент ( рассмотрим на примере  катушки индуктивности) представляют собой витки изолированного между собой провода. При протекании тока катушка намагничивается. Если изменить полярность  источника, катушка начнет отдавать запасенную энергию обратно, стараясь поддержать величину тока в контуре. Поэтому при протекании через нее  переменной составляющей , энергия запасенная при прохождении положительного полупериода, не успеет рассеяться и будет препятствовать прохождению отрицательного полупериода. В результате отрицательному полупериоду придется  погасить энергию запасенную катушкой. В итоге напряжение(U),  будет опережать ток (І) на какой-то угол φ. Ниже  приведен результат моделирования работы на L-R нагрузку  L=1*10-3 Гн, R=0.5 Ом. Uист= 250 В, частота f=50 Гц.

Онлайн калькулятор расчета реактивного сопротивления

φ – это разница фаз  между U и  I.

Реактивное сопротивление обозначается буквой X, полное  Z, активное R.

Для  индуктивности :

Где ω – циклическая  частота 

— частота питающего напряжения,  Гц;

L – индуктивность катушки;

Вывод: чем выше индуктивность L или частота , тем больше будет сопротивление катушки переменному току.

Как рассчитать потерю напряжения?

Калькулятор в режиме онлайн позволяет правильно вычислить необходимые параметры, которые в дальнейшем сократят появление различного рода неприятностей. Для самостоятельного вычисления потери электрического напряжения используют следующую формулу:

U =(P*ro+Q*xo)*L/U ном:

  • Р – это активная мощность. Её измеряют в Вт;
  • Q – реактивная мощность. Единица измерения вар;
  • ro – выступает в качестве активного сопротивления (Ом);
  • хо – реактивное сопротивление (м);
  • U ном – это номинальное напряжение (В). Оно указывается в техническом паспорте устройства.

Согласно правилам устройства электроустановок (ПУЭ) допустимой нормой возможных отклонений напряжения принято считать:

  • в силовых цепях оно может составлять не выше +/- 6%;
  • в жилом пространстве и за его пределами до +/- 5%;
  • на производственных предприятиях от +/- 5% до -2%.

Потери электрического напряжения от трансформаторной установки до жилого помещения не должны превышать +/- 10%.

В процессе проектирования, рекомендуется сделать равномерную нагрузку на трехфазной линии. Допустимая норма составляет 0,5 кВ. В ходе монтажных работ электродвигатели необходимо подключить к линейным проводникам. Линия освещения будет заключена между фазой и нейтралью. В результате этого, нагрузка правильно распределяется между проводниками.

Когда рассчитывают потерю напряжения в кабеле, за основу берут данные значения тока или мощности. На протяженной электрической линии учитывают индуктивное сопротивление.

Формула сопротивления

Формула ёмкостного сопротивления выводится следующим образом:

  • Вначале следует вычислить угловую частоту. Для этого частоту протекающего по цепи тока (в герцах) необходимо умножить на удвоенное число «пи».
  • Затем полученное число следует перемножить на ёмкость конденсатора в фарадах.

Чтобы получить значение ёмкостного сопротивления в омах, следует разделить единицу на число, полученное после умножения угловой частоты на ёмкость. Из этой формулы вытекает, что чем больше ёмкость конденсатора или частота переменного тока, тем меньше его сопротивление. Когда частота будет равна нулю (постоянный ток), ёмкостное сопротивление станет бесконечно большим. Конденсатор очень большой ёмкости будет проводить ток в широком диапазоне частот.

Онлайн калькулятор расчета реактивного сопротивления Формула сопротивления.

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Онлайн калькулятор расчета реактивного сопротивления

Смотрим осциллограммы:

Онлайн калькулятор расчета реактивного сопротивления

Как вы видите, конденсатор обладает сопротивлением, так  как сила тока в цепи значительно уменьшилась

Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока

Вспоминаем алгебру старшие классы. Итак, полный период T — это 2П

Онлайн калькулятор расчета реактивного сопротивления

Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:

Онлайн калькулятор расчета реактивного сопротивления

Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока

Популярные статьи  Как вмонтировать в трёхжильный кабель-удлинитель ножной выключатель-лягушку?

Красная осциллограмма — это напряжение, которое мы подаем на конденсатор, а желтая — это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.

100 Герц

Онлайн калькулятор расчета реактивного сопротивления

200 Герц

Онлайн калькулятор расчета реактивного сопротивления

Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Особые режимы работы цепи

Нажмите на соответствующую ссылку, чтобы посмотреть как работает калькулятор в особых режимах:

Примечания

  • Нулевая частота в объяснениях поведения этой цепи означает постоянный ток. Если f = 0, предполагается, что цепь подключена к идеальному источнику напряжения.
  • При нулевой частоте реактивное сопротивление конденсатора считается нулевым, если его емкость бесконечно большая. Если же емкость конденсатора конечная или нулевая, его реактивное сопротивление бесконечно большое и для источника постоянного напряжения он представляет собой обрыв цепи, иными словами отсутствующий конденсатор.
  • При нулевой частоте реактивное сопротивление идеальной катушки индуктивности считается бесконечно большим, если ее индуктивность бесконечно большая. Если же индуктивность катушки конечная или нулевая, ее реактивное сопротивление при нулевой частоте равно нулю и для источника постоянного напряжения она представляет собой короткое замыкание.

Онлайн калькулятор расчета реактивного сопротивления

Характеристики реактивного конденсатора

Параметры, характеризующие элементы, наносятся на их внешних корпусах, там же прописываются сведения о типе, наименовании изготовителя и дате выпуска продукции.

Перечень основных критериев:

Номинальная ёмкость – это значение, определенное ГОСТом, задаваемое в диапазоне 0 – 9999 Пф, наносимое на схемы, но без обозначений. Если числа указываются на самом конденсаторе в пределах от 10000 до 9999 в мкФ, то значения надписываются в мкФ (uF).

Единицы

  • Далее – наносятся условные отклонения от номинала.
  • Еще один важный параметр – показатель номинального напряжения (В). Специалистами рекомендовано использовать в работе элемент с дополнительными ресурсами. Не допускается применять прибор с меньшими показателями, для предотвращения пробоя изоляции из диэлектрического материала, что провоцирует поломку детали.
  • Иные характерные параметры на корпусах – рабочая температура, показатель предельной силы тока.
  • Количество фаз, от которых осуществляется работа – одна или три.
  • По виду установки: внутренняя и наружная.

Важно! Перечисленные критерии можно увидеть на корпусной детали, а расчет реактивного сопротивления выполнить самостоятельно. Дополнительные характеристики устройства для накопления зарядов:. Дополнительные характеристики устройства для накопления зарядов:

Дополнительные характеристики устройства для накопления зарядов:

  • Удельная ёмкость – это отношение непосредственных габаритов к массе диэлектрического элемента.
  • Рабочее напряжение – это номинал, который выдерживает деталь при подаче напряжения на изоляцию.
  • Стабильность температуры. В этом диапазоне изменений не отмечается.
  • Сопротивление изоляционного слоя. Этот параметр определяется исходя из тока утечки и саморазряда.

Поле

  • Эквивалентное сопротивление – обуславливается потерями на выводах и в диэлектрическом слое.
  • Процесс адсорбции. Это разность потенциалов, образовавшаяся на обкатках после обнуления заряда.
  • Сопротивление емкости. Возникает при снижении проводимости подачи переменного тока.
  • Полярность. При приложении потенциала с соответствующим значением конденсатор функционирует корректно.
  • Эквивалентная индуктивность. Это параметр, образующийся на контактах, для возникновения колебательного контура.

Характеристики

Типы реактивных сопротивлений

Когда переменный ток протекает через один из двух элементов, имеющих реактивное сопротивление, энергия попеременно запасается и высвобождается в виде магнитного поля , в случае катушек, или электрического поля , в случае конденсаторов. Это создает опережение или отставание между волной тока и волной напряжения . Этот фазовый сдвиг уменьшает мощность , подаваемую на резистивную нагрузку, подключенную после реактивного сопротивления, без потребления энергии.

Если делается векторное представление индуктивного и емкостного реактивного сопротивления, эти векторы должны быть проведены в противоположном направлении и на мнимой оси, так как полные сопротивления рассчитываются как и соответственно.ДжИксл{\ Displaystyle {j} X_ {L} \, \!}ДжИксС{\ Displaystyle {-j} X_ {C} \, \!}

Однако реальные катушки и конденсаторы имеют связанное сопротивление, которое в случае катушек считается последовательным с элементом, а в случае конденсаторов — параллельным. В этих случаях, как уже указано выше, полное сопротивление (Z) представляет собой векторную сумму сопротивления (R) и реактивного сопротивления (X).

В формулах:

С УЧАСТИЕМ~знак равнор+ДжИкс,{\ Displaystyle {\ тильда {Z}} = R + jX,}

куда

Дж{\ Displaystyle j}воображаемая единица
Иксзнак равно(ИкслИксС){\ displaystyle {X} = (X_ {L} -X_ {C})}это реактивное сопротивление в омах.

ω — угловая скорость, которой подвергается элемент, L и C — значения индуктивности и емкости соответственно.

В зависимости от значения энергии и реактивного сопротивления говорят, что цепь имеет:

  • Да , индуктивное сопротивление .Икс>{\ Displaystyle \ scriptstyle {X> 0}} (Иксл>ИксС){\ Displaystyle (X_ {L}> X_ {C})}
  • Да , реактивного сопротивления нет, а импеданс чисто резистивный .Иксзнак равно{\ Displaystyle \ scriptstyle {Х = 0}} (Икслзнак равноИксС){\ Displaystyle (X_ {L} = X_ {C})}
  • Да , емкостное сопротивление .Икс<{\ Displaystyle \ scriptstyle {Х <0}} (ИксС>Иксл){\ Displaystyle (Х_ {С}> Х_ {L})}

емкостное реактивное сопротивление

Емкостное реактивное сопротивление представлено, а его значение определяется по формуле:
ИксС{\ Displaystyle X_ {C} \, \!}

в котором:

ИксС{\ Displaystyle X_ {C} \, \!}= емкостное реактивное сопротивление в омах . = Электрическая емкость в фарадах . = частота в герцах .
С{\ Displaystyle С \, \!}ф{\ Displaystyle е \, \!}

ю{\ Displaystyle \ омега \!}= Угловая скорость .

индуктивное сопротивление

Индуктивное реактивное сопротивление представлено и его значение определяется как:
Иксл{\ Displaystyle X_ {L} \, \!}

в котором:

XL{\displaystyle X_{L}\,\!}= Индуктивное сопротивление в омах . = Индуктивность в Генри . = частота в герцах . = Угловая скорость .L{\displaystyle L\,\!}f{\displaystyle f\,\!}ω{\displaystyle \omega \!}

Практическое использование реактивного сопротивления

С помощью конденсаторных установок осуществляется компенсация реактивной мощности. Через электрические сети высоковольтная электроэнергия передается на большие расстояния. В большинстве случаев она потребляется электродвигателями с резистивными элементами и значительным индуктивным сопротивлением.

Полная мощность, поступающая к потребителям, включает в себя активную составляющую Р, с помощью которой совершается полезная работа, и реактивную составляющую Q, приводящую к нагреву обмоток электродвигателей и трансформаторов. Качество электроэнергии существенно снижается под действием реактивной составляющей, возникающей на индуктивных сопротивлениях. Для того чтобы ликвидировать ее негативное воздействие, была разработана специальная схема компенсации. С этой целью подключались конденсаторные батареи, емкостное сопротивление которых способствовало понижению косинуса угла ф.

Популярные статьи  Нужен ли блок питания для подключения светодиодного светильника 36 вт и как его выбрать?

Установка таких конденсаторных батарей практиковалась в основном на подстанциях, осуществляющих непосредственную поставку электроэнергии проблемным потребителям. Данное мероприятие позволяло эффективно регулировать качество поставляемой энергии.

Снижение уровня реактивной компоненты способствует существенному уменьшению нагрузки на установленное оборудование, хотя активная мощность остается на одном и том же уровне. Используя реактивное сопротивление конденсатора, удалось добиться экономии электроэнергии на предприятиях промышленного производства и объектах жилищно-коммунального хозяйства, повысить надежность работы энергетических систем.

Что такое сопротивление и реактивность?

Сопротивление трансформатора определяется как внутреннее сопротивление первичной и вторичной обмоток. В реальном трансформаторе первичная и вторичная обмотки имеют некоторое сопротивление, представленное R 1 и R 2 , а реактивные сопротивления — X 1 и X 2 . Пусть K — коэффициент трансформации.

Чтобы упростить вычисления, сопротивления и реактивные сопротивления могут быть перенесены на любую сторону, что означает, что либо все первичные члены относятся к вторичной стороне, либо все вторичные члены относятся к первичной стороне.Онлайн калькулятор расчета реактивного сопротивления

Резистивные и реактивные падения на первичной и вторичной стороне представлены следующим образом:

  • Падение сопротивления на вторичной стороне = I 2 R 2
  • Реактивное падение на вторичной стороне = I 2 X 2
  • Падение сопротивления на первичной стороне = I 1 R 1
  • Реактивное падение на первичной стороне = I 1 X 1

Первичная сторона относительно вторичной

Поскольку коэффициент трансформации равен K, падение сопротивления и реактивности первичной обмотки по отношению к вторичной стороне будет K раз, т.е.е., K I 1 R 1 и K I 1

1 1 2 2 2 1 2 2 1 Онлайн калькулятор расчета реактивного сопротивления

Суммарное сопротивление трансформатора

Суммарное реактивное падение в трансформаторе

Термины обозначают эквивалентное сопротивление и реактивное сопротивление трансформатора относительно вторичной обмотки.

Где Таким образом,

Из векторной диаграммы, показанной выше, уравнение может быть сформировано как , где V 2 — вторичное напряжение на клеммах, а I 2 — вторичный ток, отстающий от напряжения на клеммах V 2 на угол ϕ.

Поскольку член

Теперь уравнение принимает вид

Где V 1 — напряжение, приложенное к первичной обмотке

Если нагрузка на вторичной стороне трансформатора является чисто резистивной, тогда ϕ = 0 и уравнение (1) принимает вид Если нагрузка на вторичной стороне трансформатора является емкостной, то ϕ следует принимать как отрицательное, и уравнение ( 1) становится

Следовательно, это будет напряжение нагрузки.Онлайн калькулятор расчета реактивного сопротивления

Особенности активного сопротивления

В общем виде данный параметр выглядит, как противодействие определенного участка цепи проходящему по нему току. Полученная в результате такого процесса величина участвует в преобразовании энергии и ее переходе в какое-то другое состояние.

Величина активного сопротивления обусловлена эффектом поверхностного типа. Наблюдается процесс своеобразного перемещения тока от центра к поверхности проводника. Сечение кабеля используется не полностью, а возникающее противодействие будет значительно превышать аналогичный омический показатель.

Обратим внимание на такой момент:

Поверхностный эффект имеет незначительную величину в линиях из металлов, относящихся к категории цветных. Активное сопротивление приравнивают к омическому и считают его при условной температуре в +20°С, без учета фактических показателей окружающей среды. В справочниках имеются данные определения для использования в основном выражении R=r0l, с учетом того, что r0 – это номинальное значение искомой величины для 1 км провода, а l – его фактическая протяженность.
А вот в стальных изделиях данный показатель намного выше

Обязательно потребуется брать во внимание, зависящее от сечения явление перемагничивания и влияние таких компонентов, как вихревые токи. На практике обычно при больших нагрузках пользуются справочными данными. При этом, само явление ослабевает в проводниках многопроволочного типа.

При этом, само явление ослабевает в проводниках многопроволочного типа.

Подпишись на RSS!

    • Тиристорное зарядное устройство со стабилизацией тока
      17 февраля 2022
    • Блок измерений для зарядного устройства на PIC16F628
      3 февраля 2022
    • Блок питания с защитой по току
      17 января 2022
    • Цифровой амперметр и вольтметр для блока питания на INA226
      12 января 2022
    • Индикатор вертикальный 2×3 на TM1637
      10 января 2022
    • Микрофон для компьютера
      24 декабря 2021
    • Амперметр 50 Ампер контрольный
      23 декабря 2021
    • Аналоговое управление микроконтроллером
      19 декабря 2021
    • Автомат освещения для брудера
      17 декабря 2021
    • Стабилизированный блок питания 1,5 вольта
      8 ноября 2021
    • Активный фильтр в сети автомобиля
      6 ноября 2021
    • Зарядное устройство для автомобильных аккумуляторов — 247 997 просмотров
    • Стабилизатор тока на LM317 — 179 657 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 130 295 просмотров
    • Карта сайта — 108 758 просмотров
    • Реверсирование электродвигателей — 106 914 просмотров
    • Зарядное для аккумуляторов шуруповерта — 103 595 просмотров
    • Самодельный сварочный аппарат — 91 361 просмотров
    • Зарядное для шуруповерта — 91 025 просмотров
    • Регулируемый стабилизатор тока — 88 814 просмотров
    • Схема транзистора КТ827 — 88 784 просмотров
    • DC-DC (5)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (36)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (32)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (19)
    • Защита радиоаппаратуры (12)
    • Зимний водопровод для бани (2)
    • Измерения (44)
    • Импульсные блоки питания (2)
    • Индикаторы (8)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (6)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (21)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (36)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (16)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (3)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (14)
  • Архивы
    Выберите месяц Февраль 2022  (2) Январь 2022  (3) Декабрь 2021  (4) Ноябрь 2021  (2) Октябрь 2021  (6) Апрель 2021  (1) Март 2021  (3) Февраль 2021  (2) Январь 2021  (1) Декабрь 2020  (1) Ноябрь 2020  (1) Октябрь 2020  (1) Сентябрь 2020  (2) Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (2) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Популярные статьи  Проводники в электрическом поле

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

где

ХL — сопротивление катушки, Ом

П — постоянная и равна  приблизительно 3,14

F — частота, Гц

L — индуктивность

Подробнее здесь: https://www.ruselectronic.com/news/katushka-induktivnosti-v-tsepi-postoyannogo-i-peremennogo-toka/

где

ХL — сопротивление катушки, Ом

П — постоянная и равна  приблизительно 3,14

F — частота, Гц

L — индуктивность

Подробнее здесь: https://www.ruselectronic.com/news/katushka-induktivnosti-v-tsepi-postoyannogo-i-peremennogo-toka/

где

ХL — сопротивление катушки, Ом

П — постоянная и равна  приблизительно 3,14

F — частота, Гц

L — индуктивность

Подробнее здесь: https://www.ruselectronic.com/news/katushka-induktivnosti-v-tsepi-postoyannogo-i-peremennogo-toka/

где

ХL —  реактивное сопротивление катушки, Ом

П — постоянная и равна  приблизительно 3,14

Подробнее здесь: https://www.ruselectronic.com/news/katushka-induktivnosti-v-tsepi-postoyannogo-i-peremennogo-toka/

П — постоянная и приблизительно равна 3,14

F — частота, Гц

L — индуктивность, Генри

Онлайн-расчёт на калькуляторе

Создано множество интернет-страниц, позволяющих найти сопротивление параллельных резисторов за несколько секунд, используя в своих вычислительных алгоритмах формулы для расчёта параллельного соединения. Такие калькуляторы достаточно полезны радиолюбителям-конструкторам или специалистам РЭА при возникновении затруднения с выбором нужного номинала резистора для замены его в цепи электронного устройства.

Внешний вид онлайн-приложений может отличаться друг от друга, а вот принцип работы одинаков. Немаловажным является в работе программ тот факт, что алгоритмы их вычисления используют разную точность в округлении результата, поэтому ответ в некоторых программах при сравнении может немного отличаться.

Само приложение обычно представляет собой ячейки, в которые вносится величина значений резисторов в международной системе измерений. После того как все поля заполнены, нажимается кнопка «Рассчитать» и получается ответ в ячейке напротив. Ответ рассчитывается в Омах. В некоторых приложениях функциональность может быть расширена, это такие возможности, как автоматический перевод значений резисторов в систему СИ, отображение наиближайшего стандартного значения сопротивления из номинального ряда, близкого к полученному ответу.

Полезной функцией может быть и обратный переход, когда вводится эквивалентное сопротивление, а в ответе выдаётся комбинация номиналов проводника для параллельного включения.

https://youtube.com/watch?v=jJX6IsRhnhs

Полезные советы
Схемы для подключения
Принципы работы устройств
Главные понятия
Счетчики от Энергомера
Меры предосторожности
Лампы накаливания
Видеоинструкции для мастера
Проверка мультиметром

Закон Ома для постоянного тока — расчет, формулы

Закон Ома для постоянного тока определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи.

Закон Ома для полной цепи:

I = ε / (R + r), где:

  • ε — ЭДС источника напряжения, В;
  • I — сила тока в цепи, А;
  • R — сопротивление всех внешних элементов цепи, Ом;
  • r — внутреннее сопротивление источника напряжения, Ом.

Из закона Ома для полной цепи вытекают следующие следствия:

  • При r < R сила тока в цепи обратно пропорциональна ее сопротивлению, а сам источник в ряде случаев может быть назван источником напряжения.
  • При r > R сила тока не зависит от свойств внешней цепи (величины нагрузки), и источник может быть назван источником тока.

Часто выражение I = U / R тоже называют законом Ома. При этом формулировка следующая — сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, где:

  • I — сила тока, измеряемая в Амперах (A).
  • U — напряжение, измеряемое в Вольтах (V).
  • R — сопротивление, измеряемое в Омах (Ом, Ω).

Помимо закона Ома, важнейшим является понятие электрической мощности. Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U):

P = I × U, где:

  • P — электрическая мощность, измеряемая в Ваттах (W).
  • I — сила тока, измеряемая в Амперах (A).
  • U — напряжение, измеряемое в Вольтах (V).

Комбинируя две формулы можно получить зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Множительные приставки в системе СИ примирительные к закону Ома:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А; 1 миллиампер (1 mA) = 0,001 A; 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V; 1 милливольт (1 mV) = 0,001 V; 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Ом): 1 мегаом (1 MОм) = 1000000 Ом; 1 килоом (1 kОм) = 1000 Ом.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W; 1 киловатт (1 kW) = 1000 W; 1 милливатт (1 mW) = 0,001 W.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: