Передача электроэнергии на расстоянии

Пропускная способность линий электропередач

Напряжение в конце линии неизбежно ниже, чем в её начале. Вольтаж теряется на сопротивлении проводов ЛЭП. Именно эта разница напряжений уходит впустую на обогрев вселенной.

Такая проблема приводит к тому, что невозможно создать линию электропередач бесконечной длины и передать по ней неограниченную мощность. Поэтому введено понятие – пропускная способность ЛЭП. Данная характеристика в первую очередь зависит от длины линии, металла, из которого сделаны её провода и их сечения. Потери в меди менее ощутимы, чем у алюминия. Пропускная способность линии тем выше, чем толще её провода.

Получение и передача

Для начала стоит затронуть тему получения энергии. За последние 150 лет человечество сделало огромный шаг в разработке способов добычи электричества. Сегодня используются невозобновляемые источники, например, сжигание угля и газа, и возобновляемые — движения воды, ветра.

Лучшие умы планеты работают над совершенствованием возобновляемых технологий добычи, проще говоря экологически чистых источников. Ведь потребление энергии растет с каждым годом и электростанциям приходится сжигать все больше угля и газа, тем самым исчерпывая природные запасы и нанося вред экологии. Другое дело ветряк или ГЭС, для которых ветер и вода никогда не закончатся. Но КПД от них пока крайне мал.

Виды электростанций

Так как в большинстве стран СНГ главным поставщиком электричества в дома являются местные ТЭС (Тепловые электростанции, работающие от угля, нефти или газа), нужно рассмотреть процесс получения именно на их примере.

Вам это будет интересно Как работает схема триггера на транзисторах

Передача электроэнергии на расстоянии
Схема выработки энергии от сжигания полезных ископаемых на ТЭС

Как видно, процесс происходит следующим образом:

  1. Уголь и воздух подаются в топку.
  2. Жар от топки разогревает воду и превращает ее в пар.
  3. Пар под давлением подается на турбину.
  4. Мощный поток пара заставляет турбину вращаться.
  5. Вместе с турбиной начинает вращаться ротор генератора, который уже преобразует механическое движение в электричество.

Конечный смысл любой ЭС, неважно на каких источниках она работает, заключается во вращении турбины. На тепловых станциях турбину вращает пар, на ГЭС ­вода, в ветряке ветер

Ввиду дороговизны строить в каждом городе по электростанции невозможно. На деле большинство станций обеспечивают электричеством один крупный мегаполис и сотни приближенных сел, деревень и ПГТ.

Прежде чем попасть в населенный пункт, добытая энергия проходит десятки, а то и сотни километров. Тут стоит рассказать о том, каким образом ток вообще путешествует по проводам.

После выхода с генератора станции электрический ток попадает на трансформатор для повышения напряжения до 1150 кВ. Зачем это делается? Чем больше напряжение, тем меньше электричество теряет свою мощность, путешествуя по кабелю

Но, что еще немаловажно — это затраты на передачу электричества. Чем выше напряжение, тем меньшего сечения провода нужны

Чем тоньше кабель, тем меньше в нем проводящего металла. Чем меньше металла, тем он дешевле.

Передача электроэнергии на расстоянии
Высоковольтные линии электропередачи

Тем не менее, существует и некоторый эффект рассеивания электричества. Пока ток пройдет сотню километров, он неизбежно потеряет некоторое количество своей мощности. Так же снижение КПД зависит от силы сопротивления металла в кабеле.

Дополнительная информация. Ученые рассматривают вопрос об исключении проводов из цепочки передачи электроэнергии. Для этого планируется использовать всем знакомую технологию Wi-Fi.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Популярные статьи  Способы получения паяных соединений

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Солнечная энергия

По сути дела, все природные топливные ископаемые были образованы миллионы лет назад с участием и под воздействием солнечных лучей. Таким образом, можно сказать, что человечество давно и активно пользуется продуктами, получаемыми от солнца. Собственно говоря, и наличием рек и озер мы обязаны этому неиссякаемому источнику, который обеспечивает кругооборот воды. Однако под современной солнечной энергетикой понимается не это. Относительно недавно ученые смогли разработать и произвести специальные батареи. Они вырабатывают электричество при попадании на их поверхность солнечных лучей. Данная технология относится к альтернативному способу получения электроэнергии.

Солнце, пожалуй, является самым мощным источником из всех ныне известных. За три дня планета Земля получает столько энергии, сколько не содержится во всех разведанных и потенциальных месторождениях всех видов тепловых ресурсов. Однако поверхности земной коры достигает лишь 1/3 этой энергии, а большая часть рассеивается в атмосфере. И все же речь идет о колоссальных объемах. По подсчетам специалистов, один небольшой водоем получает столько энергии, сколько вырабатывает довольно крупная тепловая электростанция.

В мире имеются установки, которые используют энергию солнечных лучей для получения пара. Он приводит во вращение генератор и вырабатывается электричество. Однако подобные установки являются большой редкостью.

Независимо от того, по какому принципу вырабатывается электроэнергия, установка должна оснащаться коллектором – устройством для концентрации солнечных лучей. Наверняка многие видели собственными глазами солнечные батареи. Создается впечатление, что они находятся под темным стеклом. Оказывается, подобное покрытие и являет собой простейший коллектор. Принцип его работы основывается на том, что темный прозрачный материал пропускает солнечные лучи, но задерживает и отражает инфракрасное и ультрафиолетовое излучение. Внутри батареи расположены трубки с рабочим веществом. Так как тепловое излучение не пропускается сквозь темную пленку, то температура рабочих жидкостей значительно превышает температуру окружающей среды. Следует отметить, что подобные решения эффективно работают лишь в тропических широтах, где нет необходимости поворачивать коллектор вслед за солнцем.

Еще одна разновидность покрытия – вогнутое зеркало. Такое оборудование является весьма дорогостоящим решением, поэтому оно и не нашло широкого применения. Такой коллектор может обеспечить нагрев до трех тысяч градусов по Цельсию.

Данное направление бурно развивается. В Европе уже никого не удивишь домами, отключенными от электрических сетей. Однако в промышленных масштабах электроэнергия этим методом не вырабатывается. На крышах таких домов красуются солнечные батареи. Это весьма сомнительное вложение. В лучшем случае, установка такого оборудования окупится лишь за десть лет эксплуатации.

Передача на большие расстояния

Актуальность передачи электроэнергии на расстояние обуславливается тем, что электростанции снабжены мощным оборудованием, дающим на выходе большие показатели. Потребители же ее маломощные и разбросаны на большой территории. Строительство крупнейшего терминала обходится дорого, поэтому наблюдается тенденция к концентрации мощностей. Это существенно снижает затраты. Кроме того, значение имеет место размещения. Включается ряд факторов: близость к ресурсам, стоимость транспортировки и возможность работы в единой энергетической системе.

Чтобы понять, как осуществляется передача электроэнергии на большие расстояния, следует знать, что линии электропередач бывают постоянного и переменного тока. Главная характеристика — это их пропускная способность. Потери наблюдаются в процессе нагрева проводов или дальности расстояния. Передача осуществляется по следующей схеме:

  1. Электростанция. Она является источником образования электроэнергии.
  2. Повышающий трансформатор, который обеспечивает увеличение показателей до необходимых величин.
  3. Понижающий трансформатор. Он устанавливается на распределительных станциях и понижает параметры для подачи в частный сектор.
  4. Подача энергии в жилые дома.

Линии постоянного тока

В настоящее время больше отдается предпочтение передаче электроэнергии постоянным током. Это связано с тем, что все происходящие внутри процессы не носят волновой характер. Это значительно облегчает транспортировку энергии.

К преимуществам передачи постоянного тока относится:

  • небольшая себестоимость;
  • малая величина потерь;

Поставка переменного тока

К преимуществам транспортировки переменного тока относится легкость его трансформации. Осуществляется это при помощи приборов — трансформаторов, которые не отличаются сложностью в изготовлении. Конструкция электродвигателей такого тока значительно проще. Технология позволяет формировать линии в единую энергосистему. Этому способствует возможность создания выключателей в месте строительства ответвлений.

Популярные статьи  Молниезащита зданий и сооружений

Основные способы беспроводной передачи энергии

Беспроводная передача электричества в больших масштабах сейчас кажется чем-то недостижимым. Но, возможно, спустя всего несколько лет эта технология станет реальностью, как в свое время мобильные телефоны и компьютеры.

Сейчас уже известно о шести способах передачи электричества беспроводным методом. Рассмотрим все их.

  1. Электромагнитная индукция. Энергию можно подавать через магнитное поле, но только на небольшие расстояния.
  2. Ультразвук. Здесь применяются ультразвуковые волны, при помощи которых можно передавать электроэнергию на расстояние до 10 метров.
  3. Микроволновое излучение. При этом способе передачи энергии используются микроволны. Потери составляют всего лишь 5%. Но этот способ очень опасный для здоровья людей.
  4. Электростатическая индукция. Именно такой метод беспроводной передачи электричества на расстоянии был изобретен Николой Теслой. На данном этапе это самый эффективный и перспективный способ передачи энергии, так как речь идет о дальних расстояниях.
  5. Лазер. Здесь передача электричества осуществляется через лазерный луч.
  6. Технология электропроводности. Электричество передается через землю.

Все эти методы позволяют передавать электроэнергию на небольшие расстояния. Но есть и еще одна существенная проблема – все существующие сейчас приемники излучения обладают крайне низким КПД. То есть возможности передачи энергии по воздуху весьма ограничены.

История развития

Развитие дистанционной беспроводной передачи электроэнергии связано с достижениями радиотехники, поскольку оба процесса имеют одинаковую природу. Изобретения в обеих областях связаны с исследованием метода электромагнитной индукции и ее влияния на генерацию электрического тока.

Утром 1820 года Ампер открыл закон взаимодействия токов, который заключался в том, что если ток течет в одном направлении по двум близко расположенным проводникам, то они притягиваются друг к другу, а если в разных — отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное магнитное поле (которое со временем меняет размер и направление), создаваемое протеканием электрического тока, индуцирует (индуцирует) токи в соседних проводниках. У тех есть беспроводная передача электроэнергии. Мы подробно рассмотрели закон Фарадея в предыдущей статье.

Итак, Дж. К. Максвелл через 33 года, в 1864 году, перевел экспериментальные данные Фарадея в математическую форму, те же уравнения Максвелла являются фундаментальными в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн было подтверждено в 1888 г. Г. Герцем в ходе его экспериментов с искровым излучателем с переключателем на катушке Румкорфа. Таким образом создавались электромагнитные волны с частотой до половины гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но они должны быть настроены в резонанс с передатчиком. Дальность действия завода была порядка 3 метров. Когда в передатчике возникла искра, такая же искра возникла в приемниках. Фактически, это первые эксперименты по беспроводной передаче электроэнергии.

Известный ученый Никола Тесла провел обширные исследования. Он изучал переменный ток высокого напряжения и частоты в 1891 году. В результате были сделаны следующие выводы:

Для каждой конкретной цели установка должна быть настроена на соответствующую частоту и напряжение. В этом случае высокая частота не является обязательным условием. Наилучшие результаты были получены при частоте 15-20 кГц и напряжении передатчика 20 кВ. Колебательный разряд конденсатора использовался для получения тока высокой частоты и напряжения. Таким образом, можно передавать как электричество, так и производить свет.

Во время своих выступлений и лекций ученый демонстрировал свечение ламп (электронных ламп) под действием высокочастотного электростатического поля. Фактически, основные выводы Теслы заключались в том, что даже в случае использования резонансных систем невозможно передать много энергии с помощью электромагнитной волны.

Параллельно подобными исследованиями до 1897 года занимались ряд ученых: Джагдиш Боче в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи энергии:

  1. Дж. Бош в 1894 году зажег порох, передавая электричество на расстояние без проводов. Он сделал это во время демонстрации в Калькутте.
  2. А. Попов 25 апреля (7 мая) 1895 г с помощью азбуки Морзе передал первое сообщение. В России сегодня, 7 мая, по-прежнему День радио.
  3. В 1896 г. Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние 1,5 км, а затем и 3 км над равниной Солсбери.

Стоит отметить, что работы Теслы, недооцененные в свое время и утерянные на века, по параметрам и мощности превзошли работы его современников. В то же время, именно в 1896 году его устройства передавали сигнал на большие расстояния (48 км), но, к сожалению, это было небольшое количество электричества.

И в 1899 году Тесла пришел к выводу:

Несостоятельность индукционного метода кажется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Этот вывод приведет к другим исследованиям: в 1900 году ему удалось запитать лампу от катушки, проведенной в полевых условиях, а в 1903 году была запущена башня Вандерклифф на Лонг-Айленде. Он состоял из трансформатора с заземленной вторичной обмоткой и сферического медного купола наверху. С его помощью оказалось, что зажгли 200 ламп по 50 ватт. При этом передатчик находился в 40 км от него. К сожалению, эти исследования были остановлены, финансирование приостановлено, а бесплатная беспроводная передача электроэнергии оказалась экономически невыгодной для деловых людей. Башня была разрушена в 1917 году.

Согласование сопротивлений

Значение тока в цепи будет определяться законом Ома для полной цепи:

Популярные статьи  Какой лучше выбрать щиток и какого сечения и качества нужны кабеля?

Обычно внутренним сопротивлением источника можно пренебречь, поскольку оно намного меньше сопротивлений проводов и нагрузки:

Так, ЭДС источника можно определить по соотношению:

Умножим полученное выражение на величину тока:

Каждое из слагаемых в полученном выражении имеет определенный смысл. Так, в левой части равенства стоит мощность сторонних сил

илимощность источника . Первое слагаемое в правой части равенства представляет собой мощность, передаваемую потребителям, –полезную мощность . Второе слагаемое –потеря мощности .

При передаче электроэнергии важно максимально увеличить полезную мощность, сведя к минимуму при этом потери. Попытаемся этого достичь

Зависимость полезной мощности от сопротивления нагрузки (рис. 2) имеет вид:

Передача электроэнергии на расстоянии

Рис. 2. График зависимости полезной мощности от сопротивления нагрузки

Можно показать, что полезная мощность как функция сопротивления нагрузки будет иметь максимум при условии равенства сопротивления нагрузки и сопротивления подводящих проводов – согласование сопротивлений

Если сопротивление источника сопоставимо с сопротивлением проводов, то условие максимума полезной мощности будет представлять собой равенство сопротивления нагрузки и суммы сопротивлений проводов и источника. Таким образом, потребителю доставляется максимальная мощность, если сопротивление нагрузки равно сумме сопротивлений подводящих проводов и источника.

Микроволны

Неужели нет другого действительно эффективного способа беспроводной передачи электроэнергии? Да, и это было изобретено до детских попыток и игр в «Звездных войнах.

Оказывается, специальные микроволны длиной 12 см (частота 2,45 ГГц) как бы прозрачны для атмосферы и не мешают их распространению.

Передача электроэнергии на расстоянии

Какой бы плохой ни была погода, при вещании с помощью микроволн вы потеряете всего пять процентов! Но для этого вы должны сначала преобразовать электрический ток в микроволны, затем уловить их и вернуть в исходное состояние.

Первую проблему ученые решили давно. Для этого придумали специальное устройство и назвали его магнетроном. Передача электроэнергии на расстоянии

Причем сделано это настолько профессионально и безопасно, что сегодня такое устройство есть у каждого из вас дома. Идите на кухню и посмотрите на свою микроволновую печь.

Передача электроэнергии на расстоянии

Внутри такой же магнетрон с КПД 95%.

Но вот как сделать обратное преобразование? И здесь было разработано два подхода:

Американец

Советский

В Соединенных Штатах в 1960-х годах ученый У. Браун изобрел антенну, которая выполняла требуемую задачу. То есть преобразовал падающее излучение обратно в электрический ток.

Он также дал ему свое имя — ректенна.

Передача электроэнергии на расстоянии

После изобретения последовали эксперименты. А в 1975 году с помощью ректенны передавалось и принималось до 30 кВт мощности на расстояние более километра. Потери при передаче составили всего 18%. Передача электроэнергии на расстоянии

Спустя почти полвека этот опыт никогда не устарел. Казалось бы, метод найден, так почему же эти ректенны не бросили в массы?

И тут снова проявляются недостатки. Ректенны собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача мощности всего в несколько ватт.

А если хотите передать десятки или сотни киловатт, то приготовьтесь собирать гигантские панели. Передача электроэнергии на расстоянии

И здесь возникают те же неразрешимые трудности. Во-первых, это повторное излучение.

Из-за этого вы не только потеряете часть своей энергии, но и не сможете приблизиться к панелям, не потеряв при этом свое здоровье.

Вторая головная боль — нестабильность полупроводников в панелях. Достаточно сжечь один из-за небольшой перегрузки, а остальные выходят из строя, как лавина, как спички.

Передача электроэнергии на расстоянии

В СССР все было несколько иначе. Наши военные недаром были уверены, что даже при ядерном взрыве вся иностранная техника сразу выйдет из строя, а советская — нет. Весь секрет в лампах.

Передача электроэнергии на расстоянии

В МГУ двое наших ученых, В. Савин и В. Ванке, разработали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран по ламповой технологии.

Внешне это что-то вроде трубки длиной 40 см и диаметром 15 см. КПД этого лампового блока несколько ниже, чем у американского полупроводникового элемента — до 85%.

Передача электроэнергии на расстоянии

Но в отличие от полупроводниковых детекторов циклотронный преобразователь энергии имеет ряд существенных преимуществ:

надежность

высокое напряжение

сопротивление перегрузке

без повторного облучения

низкая стоимость производства

Однако, несмотря на все вышесказанное, именно методы реализации конструкции полупроводников считаются передовыми во всем мире. Здесь тоже есть модный элемент.

После первого появления полупроводников все начали резко отказываться от ламповой техники. Но практические тесты показывают, что это часто неправильный подход.

Конечно, сотовые телефоны или 20-килограммовые ламповые компьютеры, которые занимают целые комнаты, никого не интересуют. Передача электроэнергии на расстоянии

Но иногда только проверенные старые методы могут помочь нам в безвыходных ситуациях.

В результате сегодня у нас есть три возможности для беспроводной передачи энергии. Первое из рассмотренных ограничено как расстоянием, так и мощностью.

Но этого достаточно, чтобы зарядить аккумулятор смартфона, планшета или чего-то большего. Хотя эффективность невелика, метод все же работает. Передача электроэнергии на расстоянии

Лазерная техника хороша только в космосе. На поверхности земли это не очень эффективно. Правда, когда другого выхода нет, можно им воспользоваться.

Но микроволновые печи дают волю воображению. С их помощью можно передавать энергию:

на земле и в космосе

с поверхности земли на космический корабль или спутник

и наоборот, со спутника в космосе он возвращается на Землю

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: