Какие бывают помехи в электросети и как от них защититься?

Сетевые фильтры

Полностью устранить кондуктивные помехи распространяющиеся по сети невозможно. Но они должны быть ограничены допустимыми значениями при которых данное устройство может нормально функционировать не мешая работе других. Предельные значения указаны в соответствующих нормах.

Какие бывают помехи в электросети и как от них защититься?

Общая структура сетевого фильтра

Примером такого стандарта является документ, в котором перечислены допустимые уровни помех для устройств для связи, использующих сеть низкого напряжения. В Европе это стандарт PN-EN 50561. В нем также представлены характеристики радиоэлектрических помех и методы их измерения.

Какие бывают помехи в электросети и как от них защититься?

Поток тока асимметричных и симметричных компонентов в сетевом фильтре

Для уменьшения дифференциальных и общих кондуктивных помех, протекающих от устройства к устройству или от сети, используются сетевые фильтры (фильтры для защиты от помех). Их устанавливают между электросетью и нагрузкой. Они состоят из правильно подключенных пассивных элементов: катушек и конденсаторов.

Необходимые компоненты сетевого фильтра (дроссель, конденсаторы Cx и Cy) показаны на рисунке. Далее показан ток асимметричной и симметричной составляющей помех в типичном противо-интерференционном фильтре.

Классификация помех

Существует два наиболее распространенных вида помех в электросетях: импульсные и высокочастотные. Импульсные помехи бывают техногенного и природного характера. Возникновение импульсных помех происходит из-за воздействия явлений природного характера, например при молниевом разряде вблизи электропроводки.

Техногенные помехи возникают, например, при одновременном включении в сеть большого числа потребителей. Причиной техногенных помех могут быть также аварии на подстанции.

Высокочастотные помехи как правило, возникают по тем же причинам, что и импульсные. Устранить их невозможно, так как их появление в сети обусловлено включением в электросеть большого количества бытовых электроприборов.

Разница между импульсными и высокочастотными помехами заключается в частоте и времени воздействия. К импульсным помехам относят кратковременное повышение амплитуды напряжения до величины в 4000-6000 Вольт. Время воздействия составляет до 1 микросекунд. Электронные устройства не рассчитаны на воздействие напряжения такой величины и не могут обеспечить нужную защиту для оборудования. Для стандартизации этого явления Международной электротехнической комиссией введен специальный норматив для имитации импульсных помех.

Высокочастотные помехи не определяются по времени и амплитуде. Диапазон частот от 100 Гц до 30 МГц. Импульсный сигнал искажает входное напряжение 220В и  частотой 50 Гц и это влияет на работу телевидения, мониторов, аудиоаппаратуры, других электрических приборов.

Стандарт NEC (National Electrical Code)

Национальная ассоциация по противопожарной защите опубликовала стандарт NEC (National Electrical Code), по которому все кабели разделяются на две группы. К группе кабелей для проводки в зданиях относятся кабели, используемые в стационарных сооружениях, где они не подвержены деформации и обычно укладываются в каналах за стенами или в других местах, недоступных для визуального осмотра.

Ко второй группе относятся гибкие шнуры и кабели. Эти кабели предназначены для соединения электроприборов, которые могут перемещаться друг относительно друга. В область их применения входит промышленное и транспортно-загрузочное оборудование, станки и другие системы, содержащие движущиеся части с электрическими кабелями.

Неотъемлемые части кабеля — проводник, изоляция, экранировка и оболочка — должны быть качественно изготовлены, чтобы соответствовать заявленному сроку службы в наихудших с точки зрения изгибов и деформаций условиях. Однако относящиеся ко второму типу кабели обычно не рекомендуют применять в стационарных системах, поскольку они не предназначены для укладки в каналах и в других изолированных местах и не проходили соответствующего тестирования. Эти кабели, как правило, находятся в прямой видимости — поврежденный кабель легко обнаружить и заменить.

Излучательные помехи

— наиболее сложный тип помех, имеющий ряд важных для понимания специфических ограничений, связанных с частотами. Характеристики: как правило, прибор должен находиться на расстоянии 1/2 (длина волны) от источника излучения и иметь «антенну» длиной, как минимум, /20. В этом случае источник помех будет располагаться вне прибора. Способы подавления: экранировки фольгой недостаточно. Экранировка оплеткой может быть эффективной, хотя ее применение в случае излучательных помех сопряжено с дополнительными требованиями. Во-первых, экран не должен прерываться внутри экранируемых цепей. Обязательна полная экранировка со всех направлений. В случае очень высоких частот небольшие отверстия или дорожки, которые обычно допустимы, могут давать существенный вклад в импеданс. Даже безобидное отверстие, через которое проходит кабель, может стать местом проникновения излучательных помех. Тот, кто знаком со стерео-радиоприемниками, знает правильный способ экранировки и может указать контуры и конденсаторы, подверженные влиянию излучательных помех.

Возможно, вам также будет интересно

Финансовые и временные затраты на экранирование РЭА возрастают экспоненциально с увеличением размеров устройства и приближением момента сдачи изделия. При этом цена просчета, совершенного в начале проектирования, на этапе сдачи изделия может сравняться с его стоимостью. В качестве практического примера возьмем изделие, представляющее собой набор оборудования, установленного в морской контейнер. В целом к изделию предъявляются жесткие

Электрические импульсные помехи создают значительную угрозу для электрооборудования и данных. Они могут иметь разные названия, например всплески, перенапряжения и выбросы, но в любом случае последствия воздействия этих нарушений остаются одними и теми же: перебои, ухудшения свойств и повреждения оборудования, неизбежно приводящие к его простоям. По линиям электропитания, входящим в здание под или над уровнем земли, в домашнее или офисное оборудование могут передаваться значительные импульсные помехи. Выбросы

Первые полимерные электролитические конденсаторы, отвечающие стандарту AEC-Q200 от KEMET

10 июня, 2016
Компания KEMET представляет новую серию танталовых конденсаторов KEMET T598 — первых полимерных электролитические конденсаторов, которые отвечают всем требованиям стандарта AEC-Q200 для пассивных компонентов. Новые компоненты, в частности, обеспечивают стабильность и увеличенный срок службы в условиях повышенной влажности и температуры.
Взяв за основу популярную серию T591, компания KEMET доработала конструкцию, материалы и технологию производства, чтобы гарантировать большую стабильность и прочность в жестких условиях эксплуатации новой серии T598.
Особенности и преимущества:

Популярные статьи  Оказание первой помощи при поражении электрическим током

Чем опасны перепады напряжения

Перепад напряжения может быть вызван одновременным отключением нескольких мощных устройств, аварией на электросетях, нестабильной работой подстанции из-за перегрузки, эксплуатацией сварочного аппарата, низким качеством материалов электропроводки или ее монтажа. Нередко к существенному скачку напряжения приводит и удар молнии по линии электропередач.

Большинство перепадов незначительны и остаются незамеченными нами, но не техникой. Любой скачок, из-за которого напряжение в сети становится выше 250 Вольт, снижает срок службы подключенных устройств или дестабилизирует их работу. Даже несущественные отклонения на 5-10 %, происходящие регулярно, приводят к сбоям в управляющих блоках, сбросу настроек, возникновению помех. Перепады на 10-25 % сокращают срок службы приборов почти вдвое. А скачки напряжения до 300 Вольт выводят из строя блоки питания, управляющие и сенсорные панели, электродвигатели, сетевое оборудование.

В большинстве многоквартирных домов качество электропроводки оставляет желать лучшего, они не выдерживают нагрузки, ведь в каждой квартире одновременно работают десятки приборов. Безусловно, лучше поменять в квартире проводку, чтобы минимизировать вероятность перепадов и не довести до пожара. Но даже если нет такой возможности, обезопасить себя и родных можно.

Классификация помех

Все сетевые отклонения можно классифицировать по двум признакам: происхождению шумов и виду электромагнитной аномалии.

Причиной возникновения сетевых искажений являются:

  • природные явления (гроза, ионизация воздуха сияниями и т.п.);
  • техногенные влияния (аварии на линиях, коммутация мощных устройств и т. д.);
  • электромагнитные волны природного и техногенного происхождения.

Перечисленные причины могут вызвать серию импульсных помех или волны гармонических искажений, наложенные поверх синусоидального тока.

Наличие импульсных токов в сети очень вредно сказывается на работе современных бытовых приборов, часто насыщенных электроникой. Если не применять приборы защиты, электронные устройства могут выйти из строя, не говоря уже о качестве их работы. Разумеется, чувствительное оборудование разработчики защищают внедрёнными схемами подавления помех, но нередко требуются дополнительные внешние приборы, например, бесперебойные источники питания, сетевые фильтры (рис. 1) и другие.

Какие бывают помехи в электросети и как от них защититься?
Рис. 1. Защитные импульсные фильтры

При радиочастотных помехах большинство бытовых приборов могут нормально работать. Но к ним чувствительны радиоприёмники, телевизоры и некоторые медицинские приборы. Впрочем, современная цифровая радиоэлектроника довольно хорошо защищена от таких искажений.

Понимание причин искажений в электрической сети помогает решать проблемы защиты оборудования, осознанно подходить к выбору оптимальных схем подавления шумов.

Методы измерения

Можно ли увидеть сетевые искажения?

С помощью приборов можно не только увидеть наличие помех, но и оценить их величину и определить природу появления. Существуют специальные высокоточные приборы для измерения различных отклонений в сетях. Наиболее распространённым из них является обычный осциллограф.

У прибора имеется дисплей (экран), на котором отображается осциллограмма измеряемого тока. Оперируя различными режимами осциллографа можно с высокой точностью определять характер и уровень шумов.

Пример осциллограммы показан на рисунке 6.

Рисунок 6. Осциллограмма сетевого тока

На осциллограмме видно как основной сигнал окружают паразитные токи, которые необходимо отсекать. Анализируя характер искажений можно выбрать способ их подавления. Часто бывает достаточно применить сетевой фильтр для того, чтобы избавиться от типичных помех, влияющих на работу устройств.

Требования к гибкости

Кабели для задач, где главным фактором является гибкость, обычно имеют:

  • качественные проводники из медных нитей;
  • гибкую изоляцию;
  • нескользящие изоляционные компоненты на каждом слое проводника;
  • равномерную обмотку связки проводников;
  • внутреннюю оболочку между связкой проводников и экраном;
  • очень качественную медную экранирующую оплетку;
  • экран из фольги со шнуром вокруг линии для обратной связи;
  • гибкую внешнюю оболочку.

Экраны гибких кабелей делаются из качественных неизолированных медных нитей, которые очень легко принимают форму связки проводников. Когда кабель сгибается, экран должен скользить вдоль связки проводников с низким трением и не застревать на неодно-родностях, формируемых отдельными проводниками или промежутками между ними. Отсутствие гладкой цилиндрической поверхности под экраном может привести к безвозвратной деформации (скручиванию) кабеля. Между экраном и связкой проводников помещается тонкая внутренняя оболочка, чтобы заполнить промежутки между проводниками и тем самым сформировать гладкую цилиндрическую поверхность, по которой будет хорошо скользить экран. Хорошим способом создания гладкой поверхности под экраном является добавление наполнителей и обмотки из текстильных волокон. Особенность другого процесса изготовления кабелей — штампованная внутренняя оболочка, которая, благодаря своей структуре, поддерживает практически идеальную цилиндрическую форму связки проводников даже во время изгиба. Данный метод требует больше затрат, чем технология с наполнителем и обмоткой, но обеспечивает большую надежность. Экран оплетается или наматывается на внутреннюю оболочку, затем покрывается наружной оболочкой. Относительное смещение составляющих кабеля во время сгиба создает трибоэлектрический шум, что приводит к возникновению статических и пьезоэлектрических помех

В тщательно сконструированных кабелях это явление сведено к минимуму, однако его нужно всегда принимать во внимание. Различные типы деформаций влияют на выбор составляющих кабеля, включая экран

К обычным типам деформации кабелей относятся продольный изгиб, поперечный изгиб и скручивание. В технических характеристиках указывается тип деформации, которая не нанесет кабелю повреждений. Поперечный изгиб — это изгиб или вращение свободного конца закрепленного на шарнире кабеля в разные стороны. Продольный изгиб возникает при фиксации одного конца кабеля и перемещении другого конца вперед и назад. Кабели, предназначенные только для линейных изгибов не должны подвергаться скручиванию. Например, скручивание имеет место в робототехнике, когда рука робота, внутри которой находятся кабели, вращается против и по часовой стрелке. Для таких задач лучше всего подходит экран из спиральной обмотки.

Популярные статьи  Ручная и автоматическая электродуговая сварка

Источники бесперебойного питания (ИБП)

ИБП объединяет в себе функции сетевого фильтра и стабилизатора (кроме резервного типа), но помимо этого позволяет технике работать еще какое-то время после отключения электропитания. Бесперебойники бывают трех типов: резервные, интерактивные и с двойным преобразованием.

Резервный вариант — самое простое и дешевое решение. Он пропускает ток через LC-контур, как в хороших сетевых фильтрах, а если необходимое напряжение отсутствует, осуществляется переключение на аккумуляторы. К недостаткам резервных бесперебойников можно отнести задержку при переключении на батареи (5 – 15 миллисекунд).

Интерактивные ИБП оснащены ступенчатым стабилизатором, позволяющим поддерживать надлежащее напряжение на выходе без использования батарей, что увеличивает срок их службы. Такие источники бесперебойного питания годятся для ПК и значительной части бытовой техники.

Бесперебойникис двойным преобразованиемпреобразуют полученный переменный ток в постоянный, а на выходе подают снова переменный с необходимым напряжением. Аккумуляторные батареи при этом все время подключены к сети, переключение не производится. ИБП данного типа отличаются более высокой стоимостью, в то же время создают больший шум при эксплуатации и сильнее нагреваются. Применяются в основном для требовательного к надежности питания оборудования: серверов, медицинское оборудования.

Источники помех в WiFi сетях

Аналоговые беспроводные телефоны

Аналоговые беспроводные телефоны являются классическим источником помех для беспроводных локальных сетей стандарта 802.11 (WLAN). В отличие от цифровых беспроводных телефонов, аналоговые беспроводные телефоны используют узкополосную передачу, когда передаваемый сигнал занимает только узкую полосу частот радиочастотного спектра. Из-за этого такие телефонные аппараты могут оказывать серьезные помехи точке доступа 802.11, работающей на том же канале или частоте, в то же время, не оказывая значительных помех точкам доступа, работающим на других неперекрывающихся каналах.

Характеристика радиочастотного спектра

Ниже на рисунке показана характеристика радиочастотного спектра аналогового беспроводного телефона, работающего в частотном диапазоне 2,4 ГГц.

Какие бывают помехи в электросети и как от них защититься?

Характеристика радиочастотного спектра аналогового беспроводного телефона, работающего в частотном диапазоне 2,4 ГГц

(Power (dBm) = Мощность (дБм), Channel = Канал, Max-Hold = Максимальный уровень с удержанием, Max = Максимальный уровень, Avg = Средний уровень)

Воздействие на сеть WLAN 802.11

Одно из лабораторных исследований показало, что аналоговый беспроводной телефон, осуществляющий передачу на частоте 2,412 ГГц (это центральная частота канала 1 диапазона WLAN 2,4 ГГц), способен в момент включения телефона рядом с точкой доступа эффективно помешать работе беспроводного соединения по этому каналу. В то же время соединения на двух других неперекрывающихся каналах (6 и 11) были едва затронуты. Исследование также позволило обнаружить, что пропускная способность сети может снижаться на 99%, когда аналоговый беспроводный телефон находится на расстоянии 15 метров от точки доступа, на 20% при расстоянии в 30 метров и на 5% при расстоянии 45 метров. В исследовании сделан вывод, что если аналоговые беспроводные телефоны расположены близко к точкам доступа, то могут существенно повлиять на беспроводную связь по каналу, на котором они работают.

Различными производителями выпускается множество моделей аналоговых беспроводных телефонов. Они широко используется в домах и офисах, где также развернуты беспроводные сети стандарта 802.11. Чтобы устранить вносимые аналоговыми беспроводными телефонами помехи, сначала необходимо идентифицировать и определить их местонахождение в беспроводной локальной сети.

Рекомендуемые действия

После успешного поиска, оказывающих помехи аналоговых беспроводных телефонов, можно предпринять следующие действия, которые позволят свести к минимуму или устранить наносимые ими вашей сети WLAN 802.11 радиочастотные помехи:

  • Если имеется сеть WLAN стандарта 802.11, работающая в частотном диапазоне 2,4 ГГц, избегайте или прекратите использование аналоговых беспроводных телефонов на том же канале, что и точки доступа сети. Вместо этого попробуйте настроить на них другие неперекрывающиеся каналы. Если же использование беспроводных телефонов частотного диапазона 2,4 ГГц является обязательным, и необходимо столько каналов, сколько возможно, попробуйте использовать телефоны на базе технологии DSS (Digital Spread Spectrum), которые имеют более широкий диапазон, более высокий уровень безопасности и оказывают меньшие помехи.
  • Если имеется сеть WLAN стандарта 802.11, работающая в частотном диапазоне 2,4 ГГц, попробуйте использовать аналоговые беспроводные телефоны частотного диапазона 5,8 ГГц или даже старого частотного диапазона 900 МГц, которые работают на других частотах и используют другие каналы.
  • Если имеется сеть WLAN стандарта 802.11, работающая в частотном диапазоне 5 ГГц, избегайте или прекратите использование беспроводных телефонов диапазона 5,8 ГГц. Вместо них используйте беспроводные телефоны частотного диапазона 2,4 ГГц.
  • Если с оптимальной пропускной способностью сети WLAN нет никаких проблем, продолжайте использовать беспроводные телефоны частотных диапазонов 2,4/5,8 ГГц вместе с беспроводными локальными сетями стандарта 802.11, но чтобы свести радиочастотные помехи к минимуму, старайтесь поддерживать максимальное расстояние между точками доступа сети WLAN и базами беспроводных телефонных аппаратов.

Сетевые помехи и причины их появления

Для высокочувствительных установок и устройств (компьютеры, промышленные контроллеры, измерительная техника и т.д.) качество сетевого напряжения стало решающим фактором с точки зрения их функционирования, надежности, затрат на обслуживание и срока службы.

Сетевые помехи приводят к выходу системы из строя и оказывают отрицательное влияние на функционирование установок, а также электронных потребителей. Сетевые помехи могут привести даже к полному выходу из строя установки или приборов.

Чаще всего встречаются:

  • длительные перенапряжения в сети
  • длительные падения напряжения в сети
  • импульсные помехи и переходные процессы
  • провалы и толчки напряжения
  • электрические помехи
  • кратковременное прекращение подачи напряжения
  • долговременное прекращение подачи напряжения

Сетевые помехи могут быть вызваны самыми различными причинами, напр.:

  • коммутационные процессы в сети
  • длинные пути прохождения сигнала в сети
  • воздействия окружающей среды, напр., непогода
  • перегрузки в сети

Типичными причинами сетевых помех, создаваемых внутри зданий, являются, например:

  • тиристорные приводы
  • лифты, кондиционеры, копировальные устройства
  • двигатели, компенсаторные установки
  • электросварка, крупные машины
  • включение освещения
Популярные статьи  Возможен ли перекос фаз при отключенном электроотоплении летом?

Сетевые помехи могут возникать по отдельности и в комбинациях. Возможными причинами этих помех и воздействий могут быть:

Сетевые помехи Доля в общих помехах Воздействие
Перенапряжение в сети

Напряжение сети долгосрочно превышается более чем на +6 % (по DIN IEC 60038)

ок. 15 % — 20 % Может привести к перегреву и даже к термическому разрушению отдельных компонентов. Вызывает общий выход из строя.
Падение напряжения в сети

Напряжение сети долгосрочно снижается более чем на –10 % (по DIN IEC 60038)

ок. 20 % — 30 % Может привести к неопределенным рабочим состояниям потребителей. Вызывает потерю данных.
Импульсные помехи

Мощные импульсы (напр., 700 В/1 мс) и обладающие малым запасом энергии переходные процессы (напр., 2500 В/20 мкс) возникают из-за коммутационных процессов в сети

ок. 30 % — 35 % Может привести к неопределенным рабочим состояниям потребителей и может вызвать разрушение компонентов.
Провалы и толчки напряжения

Уровень напряжения изменяется кратковременно и неконтролируемо, напр., из-за изменения нагрузки и длинных проводов

ок 15 % — 30 % Может привести к неопределенным рабочим состояниям и к разрушению компонентов. Вызывают ошибки в данных.
Электрические помехи

Накладывающаяся на сеть смесь частот из-за плохого заземления и/или сильных высокочастотных помех, как, напр., радиопередатчики, грозы

ок. 20 % — 35 % Может привести к неопределенным рабочим состояниям потребителей. Вызывает потерю данных.
Прекращение подачи напряжения

Кратковременное прекращение подачи напряжения (до примерно 10 мс), из-за короткого замыкания в соседних сетях или запуска мощных электрических машин.

ок. 8 % — 10 % Может привести к неопределенным рабочим состояниям потребителей, особенно с недостаточной буферизацией питания. Вызывает потерю данных.
Прекращение подачи напряжения

Длительное прекращение подачи напряжения (начиная примерно от 10 мс)

ок. 2 % — 5 % Может привести к неопределенным рабочим состояниям потребителей, особенно с недостаточной буферизацией питания. Вызывает потерю данных.

Сетевые помехи и воздействия

Семейство продуктов SITOP power предоставляет множество возможностей для минимизации или исключения рисков, связанных с сетевыми помехами, уже на подготовительном этапе.

Способы защиты

К сожалению, мы не можем управлять качеством электросети, но защитить бытовую технику вполне реально. В зависимости от того к каким искажениям чувствителен конкретный электрический прибор, выбирают соответствующий способ защиты. Снизить уровни помех помогают различные внешние устройства, встроенные электрические схемы, а также экранирование элементов конструкций и заземления.

Пример подавления помех показан на рисунке 3.

Рис. 3. График, иллюстрирующий фильтрацию тока

Эффективными являются следующие внешние устройства:

  • стабилизаторы напряжения;
  • ИПБ;
  • преобразователи частоты;
  • регулируемые трансформаторы;
  • сетевые фильтры и фильтрующие каскады (принципиальная схема простого фильтра изображена на рисунке 4).

Схема сетевого фильтра Особую трудность вызывает подавление высокочастотных импульсных искажений в диапазоне нескольких десятков МГц. Часто для этих целей используют защиту, применяемую непосредственно к источнику помехи.

Высоким уровнем защиты компьютеров и другой чувствительной электроники обладают бесперебойники. На рисунке 5 показано фото источника бесперебойного питания для защиты компьютера.

Рисунок 5. ИБП

В этих устройствах реализовано несколько защитных функций, но главная из них – снабжение питанием приборов в течение нескольких минут, с последующим корректным их отключением. С целью достижения максимального уровня защиты логично отдать предпочтение бесперебойному блоку питания.

Методы измерения

Измерение шумов в сети осуществляется специальными приборами. Но если таких приборов нет, то следует применять дополнительные конкретные меры.

Как правило, прибор, которым необходимо измерить помехи в электросети, будет питаться от того же источника, измерение которого необходимо произвести. Если неправильно подключить провода, то возникнут погрешности при снятии показаний. На рисунке ниже изображена схема подключения прибора, с помощью которого будет осуществляться измерение:

Чтобы измерить помехи используют и осциллограф. При наличии запоминающей трубки, прибор способен будет сделать измерение. О том, как пользоваться осциллографом мы рассказывали в отдельной публикации.

Теперь вы знаете, из-за чего возникают помехи в электросети и как защититься от них. Надеемся, предоставленная информация была для вас полезной!

Предназначение фильтров ЭМС для частотных преобразователей

Частотный преобразователь создаёт сильные помехи, и их требуется свести к минимуму при комплектации монтаже, установке и эксплуатации электрического привода.

Преобразователи частоты неминуемо создают помехи, они являются основными источниками и виновниками больших скачков напряжения. Для нормальной работы приводной техники это оборачивается такими негативными явлениями, как:

  • избыточная энергия, передающаяся по проводу и называемая наведёнными помехами;
  • воздействие электромагнитных волн, то есть паразитное электромагнитное излучение.

Для всех этих негативных помех соответствует свой высокочастотный диапазон. Радиочастотные помехи также считаются частью электромагнитных помех, влияющих особенно на средства связи. Защитой от помех является фильтрация. ЭМС-фильтры обеспечивают соблюдение норм по электромагнитной совместимости и защищают от токов утечки, вызванных емкостью проводников. В совокупности с экранированным кабелем двигателя достигается нормальная работа техники.

Выходные ЭМС-фильтры для частотных преобразователей

ЭМС-фильтры делятся на активные и пассивные. И в тех и других присутствуют катушки индуктивности, конденсаторы и резисторы. Отличие заключается в том, что в активных фильтрах применяются:

  • нелинейные элементы;
  • обратная отрицательная связь, то есть часть выходного сигнала подается на вход усилителя в противофазе.

Помимо этого, разумеется, активным фильтрам требуется питание. А, главное, они намного эффективнее, чем пассивные фильтрующие средства.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: