Преобразователь частоты — векторный, однофазный, схемы и инструкции

О способах управления

В интернете много теоретической информации о том, какой вариант лучше. На самом деле основывать свой выбор надо не на оценках метода управления, а на области применения преобразователя частоты. В оборудовании, которое работает с кранами, подъемными механизмами или протяжными станками используется векторный способ. В насосах и вентиляторах, то есть в тех механизмах, где скорость практически не меняется, обычно используется скалярный. Оба этих метода решают одну задачу: регулировки скорости и изменения момента.

— Что такое ПИД-регулятор, управляющие входы/выходы, и насколько это важно?

Самый простой пример его использования: требуется поддерживать постоянное давление в трубе 5 Бар. ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим работы ПЧ.

Преобразователь частоты — векторный, однофазный, схемы и инструкции ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим его работы.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Принцип работы

Преобразователь частоты для асинхронного двигателя с ШИМ, по сути, является инвентором с двойным преобразованием напряжения.

Входной диодный мост выпрямляет сетевое напряжение 220 или 380В, а затем сглаживает и фильтрует его посредством конденсатора.

Далее посредством входных мостовых ключей и микросхем из постоянного напряжения формируется последовательность электрических сигналов определенной частоты и скважности. Таким образом, на выходе из частотного преобразователя образуются пучки прямоугольных импульсов

Однако, благодаря индуктивности обмоток асинхронного двигателя, они превращаются в напряжение, схожее с синусоидным.

В устройстве также имеется микропроцессор, который дает возможность выполнять такие задачи, как:

  • контроль выходных параметров;
  • защита системы;
  • диагностика состояния подаваемого тока.

Большинство преобразователей частоты для асинхронных двигателей построены на основе двойного преобразования. Среди них выделяют два основных класса:

  • с созданием промежуточного звена;
  • с непосредственной связью.

Каждый из видов частотников предназначен для работы в определенных условиях, которые диктуют выбор и целесообразность использования в конкретной ситуации.

Выпрямители управляемого типа обеспечивают непосредственную связь, отпирая группы тиристоров, и обеспечивают подвод напряжения к обмотке электродвигателя.

Преобразование напряжения в данном случае осуществляется посредством вырезания синусоид из входного тока. При этом полученная частота находится в диапазоне от 0 до 30Гц. Для регулируемых приводов этот вариант использования не подходит.

Для использования незапираемых тиристоров необходимо создание более сложной системы управления, которая повышает стоимость создаваемой цепи.

В противном случае, синусоида при входе может привести:

  • к появлению гармоник;
  • к потерям в электродвигателе;
  • к перегреву электродвигателя;
  • к снижению показателя крутящего момента;
  • к образованию сильных помех.

Помимо этого, компенсаторы повышают стоимость цепи, габаритов и веса, а потери снижают КПД.

К другому классу относятся цепи питания, где используются частотные преобразователи для асинхронных двигателей с промежуточным звеном. Они обеспечивают преобразование электрического тока в два этапа.

На первом этапе синусоидное напряжение с постоянной частотой и амплитудой преобразуется посредством выпрямления. При этом применяются специальные фильтры, сглаживающие показатели.

На втором этапе посредством инвертора на выходе происходит преобразование энергии с изменяемым показателем частоты и амплитуды.

Это приводит:

  • к снижению КПД;
  • к ухудшению показателей соотношения массы и габаритов устройства.

Частотные преобразователи для асинхронных двигателей, работающие как тиристор, имеют следующие преимущества:

  • обеспечивают возможность работы в системах с большими показателями тока;
  • такая система предназначена для использования там, где имеются большие показатели тока;
  • они устойчивы к большим нагрузкам и импульсному воздействию;
  • обеспечивают высокий КПД, достигающий 98 %.

Мы перечислили все особенности каждого типа преобразователей частоты для асинхронных двигателей, теперь, попробуем выяснить, на чем следует основываться при выборе частотника.

Управление скоростью однофазных двигателей

Существуют несколько способов управления однофазными двигателями. Наибольшее распространение получили методы изменения скорости величиной и частотой напряжения. Регулирование напряжением имеет свои недостатки:

  • Избыточный нагрев обмоток из-за повышения скольжения.
  • Потеря жесткости механических характеристик на низких скоростях.

Изменение частоты вращения вала возможно в отношении 2:1 к номинальной скорости в сторону снижения. Несмотря на это, регулирование напряжения часто применяют для маломощных электрических машин бытовых приводов.

Самая простая схема – автотрансформаторная. Такой способ позволяет реализовать 2-5 ступенчатое управление скоростью однофазного электропривода.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Автотрансформатор Т1 имеет несколько выводов, соответствующих значению напряжения для каждой скорости двигателя М1. Переключение осуществляется коммутационным аппаратом SW1. К преимуществам схемы относятся возможность выдерживать перегрузки по току и отсутствие искажения формы питающего напряжения. К недостаткам относятся значительные габариты и масса автотрансформатора, а также другие минусы управления напряжением.

Схемы на базе электронных регуляторов напряжения также широко применяют в однофазных приводах небольшой мощности.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Управление осуществляется формированием необходимой величины напряжения путем регулирования момента открытия и закрытия тиристоров. В результате получается напряжение «резанной» формы. Это вызывает дополнительный нагрев, треск, рывки и повышенный шум, увеличение уровня электромагнитных помех. Управление электронными регуляторами напряжения не подходит при длительной работе на низкой скорости, при высоких требованиях ЭМС.

Для частотного управления применяют преобразователи частоты или ПЧ. Для изменения скорости однофазного электродвигателя применяют 2 схемы: одно- или трехфазный ШИМ-инвертор. Первая работает следующим образом: переменное напряжение преобразуется в постоянное, фильтруется на конденсаторе.

Далее преобразуется обратно в переменное на транзисторном инвертере. Широта и скорость отпирающих и запирающих полупроводниковые элементы импульсов подобрана таким образом, чтобы на выходе силовой схемы получалось напряжение заданной частоты.

Частотная регулировка скорости может осуществляется вверх и вниз от номинальной. При этом форма напряжения на выходе инвертора близка и синусоидальной.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

К недостаткам однофазного частотного управления относится относительно высокая стоимость преобразователя, невозможность реверсирования без внешней аппаратуры.

Для изменения скорости двигателя в широком диапазоне, применяют специализированные преобразователи частоты на базе 3-фазного ШИМ-инвертора.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Принцип работы устройства аналогичен однофазному аналогу. Схема позволяет осуществлять изменения скорости вращения двигателя в любую сторону в значительном диапазоне и реверсировать двигатель изменением порядка коммутаций транзисторов.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

При этом не нужно применять дополнительные электроаппараты.

Рассмотрим подробнее особенности преобразователей частоты для однофазных двигателей, преимущества и недостатки устройств.

Популярные статьи  Как сделать так, чтобы только я вставил вилку в розетку и у меня загорелась лампочка на переноске?

Электродвигатели для частотного регулирования — АДЧР

Асинхронные трёхфазные низковольтные короткозамкнутые частотно-регулируемые двигатели специальных модификаций

Электродвигатели асинхронные с короткозамкнутым ротором общего назначения, частотно-регулируемые АДЧР (в дальнейшем «двигатели»), предназначены для работы в составе одиночного и (или) группового частотно-регулируемого электропривода или от сети переменного тока в режиме S1-S9 по ГОСТ Р 52776 частоты 50 Гц и 60 Гц.

Усовершенствованная технология изготовления обмотки статора и конструкция магнитопровода обеспечивают надежную эксплуатацию двигателей при питании от автономных инверторов напряжения и возможность регулирования частоты вращения в широком диапазоне.

Основные области применения частотно-регулируемого электропривода:

• энерго- и ресурсосберегающие системы с нагрузкой вентиляторного типа – привода центробежных насосов, вентиляторов, воздуходувок.

• замена приводов на базе двигателей постоянного тока – машиностроение, металлургическая, химическая, пищевая, стекольная, целлюлозно-бумажная и текстильная промышленности.

Применение двигателей возможно при следующих типах управления частотой вращения:

  • Скалярное вольт-частотное – управление, при котором изменение частоты вращения достигается путем воздействия на частоту напряжения статорных обмоток при одновременном изменении амплитуды этого напряжения.
  • Векторное – регулирование с обратной связью по частоте вращения, основанное на мгновенном управлении амплитудой и фазовым углом намагничивающей и рабочей составляющей токов статора.
  • Бездатчиковое (беcсенсорное) векторное – векторное управление, не требующее применения датчиков частоты вращения.

Перечень модификаций двигателей АДЧР:

  • «О» — двигатели стандартного исполнения. Представляют собой базовый конструктивный вариант двигателя. Отсутствуют независимая вентиляция, тормоз и датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «В» — двигатели, оснащенные системой независимой вентиляции. Отсутствуют тормоз и датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «ДВ» — двигатели с датчиком скорости/положения и независимой вентиляцией. Отсутствует тормоз (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «ТВ» — двигатели с электромагнитным тормозом и независимой вентиляции. Отсутствует датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «Т» — двигатели, оснащенные электромагнитным тормозом. Отсутствуют независимая вентиляция и датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «ТДВ» — двигатели с электромагнитным тормозом, датчиком скорости/положения и независимой вентиляцией (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).

1.1.Расчет мощности и выбор силового трансформатора

     Для согласования заданной величины выпрямленного напряжения питающей сети и ограничения скорости тока в тиристорах ТП используется силовые трансформаторы.

,                    (1.1)

где

Eн – номинальное значение ЭДС электродвигателя;

Eн=UДН-IДН*RЯ

UДН – номинальное напряжение на якоре электродвигателя;

IДН – номинальный ток электродвигателя;

IДН – номинальное значение выпрямленного тока преобразователя;

RЯ – активное сопротивление двигателя с учетом сопротивления якоря, компенсационной обмотки и добавочных полюсов, приведенное к рабочей температуре 80С;

Ориентировочные значения сопротивления обмотки якоря определяется следующей формулой:

a min – минимальный угол регулирования ТП (a min = 15 эл.град.);

DUВ – падение напряжения на тиристоре, орентировочно на предварительном этапе расчета принять  ∆UВ = 1,2В.

ав – коэффициент зависящий от схемы выпрямления; ав=2

d, СТ, b – расчетные коэффициенты

d = 0,0043, СТ = 0,0052, b = 0,0025

Ксет – коэффициент, учитывающий индуктивностя сети переменного тока; Ксет = 1,4.

lн %, DPН% – напряжение короткого замыкания и потери в меди трансформатора; lн % = 7%, DPН% = 2%.

K1 – коэффициент перегрузки двигателя по току (K1 = I dmax /I dn =370/123=3);

I dmax – максимальный ток электродвигателя;

RS — суммарное активное сопротивление цепи выпрямленного тока(обмотка силового трансформатора, реакторов, полное сопротивление якорной цепи электродвигателя, динамическое сопротивление тиристоров и т.п.);

RS= RТР+ Rdц+ Rр+ nRдин

где т – число тиристоров, последовательно обтекаемых током;

Rдин – динамическое сопротивление тиристоров проводящем состоянии (при подстановки этого значения учитывается общее число последовательно соединяемых вентилей в цепи нагрузки в проектируемой схеме преобразователя).

Величина Idн RΣ на этапе предварительного расчета может быть принято равной (0,1…0,2) Uдн;

Idн * RΣ = 0,15*110=16,5

В

 В

Величина требуемого фазного напряжения на вторичной стороне силового трансформатора для мостовых схем ТП определяется соотношением:

В

Расчетная мощность трансформатора определяется по формуле

Где Kn – коэффициент, зависящий от схемы выпрямления Kn=1,045

S=1.045*151.15*123=19428.06=20кВа

В соответствии с расчетными значениями S=20кВа и U=65В, выбираем трансформатор серии ТСП 25/0,7

Номинальные данные трансформатора ТСП 25/0,7

Sном = 29кВа                                    ∆Рк,з = 1300Вт

Uл = 380В                                        ∆Рх,х = 170Вт

U = 75В                                        eкз% = 5,4%

I = 128,9А                                              Ixx = 6.3A

Определим линейное напряжение вторичной обмотки трансформатора

В

Определим максимальное значение выпрямленной ЭДС Уd0 для трехфазной мостовой схемы выпрямления при l=0

В

Найдем полное сопротивление фазы трансформатора, приведенное на вторичной обмотке:

I2Л – линейный ток вторичной обмотки

Активное сопротивление фазы трансформатора

Индуктивное сопротивление фазы трансформатора

Индуктивность фазы трансформатора, Гн

Где fc – частота питающей сети,  F c =50Гц

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Индикация скорости

Крутая фишка многих ПЧ – выходные дискретные и аналоговые клеммы. На них можно запрограммировать множество событий. Например, в статье про установку ПЧ в лентопильный станок (труборезку) я рассказал, что выходное реле замыкается по достижении целевой частоты и дает сигнал на следующую функцию.

Тут я использовал аналоговый выход для индикации оборотов двигателя. Для этого установлена функция аналогового выхода “Индикация выходной частоты” (параметр 03.03 = 0). При этом максимальная частота 60 Гц соответствует напряжению 10 В. Я немного скорректировал показания вольтметра (на 3%) в параметре 03.04.

Таблица скоростей ПЧ
Показания вольтметра Вых. Частота Обороты двигателя
3,4 20 1200
5,1 30 1800
6,8 40 2400
8,4 50 3000
9,3 55 3300
10 60 3600

Выходное аналоговое напряжение подается на вольтметр постоянного напряжения с пределом 30 В. В результате оператор станка на индикаторе наблюдает число, которое однозначно соответствует скорости полировки.

Популярные статьи  В чем может быть причина запаха паленых (жженых) проводов в квартире?

Разработка

Электрическая схема тиристорный преобразователь-двигатель (к примеру, КТЭ) для плавного переключения может быть двух видов:

Однофазной;
Многофазной.

В зависимости от типа исполнения варьируются соотношения расчетных единиц и принципы работы преобразователя.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Фото – нулевая схема трехфазного преобразования

На этом чертеже схематически показано изменение электрической энергии при работе тиристорного преобразователя в режиме выпрямителя и инвертора. В то же время, для мостовой схемы можно сделать такую же диаграмму, но только состоящую из двух нулевых. Именно она наиболее часто используется при проектировании преобразователя для станочного оборудования. Это происходит из-за того, что исходное фазовое напряжение в ней в два раза превышает фазовой напряжение (Udo) в нулевой схеме работы.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Фото – питание

Однофазная схема используется для контроля питания и работы привода машин с высоким индуктивным сопротивлением. Она работает в пределах мощности от 10 кВт до 20, намного реже – при больших мощностях. К примеру, подойдет для электрической печи, домашнего станка.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Фото – однолинейная схема

Трехфазная используется для оборудования, где требуется от 20 кВт для работы. К примеру, для синхронных приводов, двигателя крана и экскаватора. Еще одной популярной многофазной схемой контроля является шестифазная (Кемрон). Её проект предусматривает использование в конструкции уравнительного реактора, который направлен на контроль низкого напряжения и высокого тока. Этот силовой электрический прибор пропускает и преобразовывает электрическую энергию параллельным путем, а не последовательным (как большая часть аналогичных устройств). Его более сложно разработать своими руками, но степень надежности и эффективности значительно больше, нежели у однофазного тиристорного преобразователя. Но такой реверсивный контроллер имеет серьезный недостаток – его КПД менее 70 %.

Своими руками можно сделать собственный преобразователь, но многое зависит от используемой базы. Внизу дана схема, разработанная на основе Micro-Cap 9. Главной особенностью этой модели является необходимость в совместном моделировании различных узлов.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Фото – Схема тиристорного уравнителя

Видео: как работают тиристорные преобразователи

Сборка преобразователя частоты для асинхронного двигателя своими руками

Собрать инвертор или преобразователь можно самостоятельно. В настоящее время в сети находится множество инструкций и схем такой сборки.

Основная задача – получить «народную» модель. Дешёвую, надёжную и рассчитанную на бытовое применение. Для работы оборудования в промышленных масштабах, конечно, лучше отдать предпочтение устройствам, реализуемым магазинами.Порядок действий по сборке схемы частотного преобразователя для электродвигателя

Для работы с домашней проводкой, с напряжением 220В и одной фазой. Примерная мощность двигателя до 1кВт.

  1. Обмотки двигателя соединяются треугольником.
  2. Для сборки частотного преобразователя для однофазного двигателя нужны: IR2135(IR2133) – драйвер трёхфазного моста, AT90SPWM3B – микроконтроллёр (используется как генератор PWM), программатор (например, AVReAl), шесть штук транзисторов IRG4BC30W, ЖКИ индикатор, шесть кнопок.
  3. Преобразователь состоит из двух плат. К первой крепится блок питания, драйвер. Также здесь размещаются транзисторы и силовые клеммы.
  4. На второй устанавливается микроконтроллёр и индикатор. Между собой платы объединяются гибким шлейфом.
  5. Импульсный блок питания своими руками собирается по стандартной схеме.
  6. Для управления двигателем не требуется внешнее управление током. Но можно установить микросхему дополнительно (IL300), создав линейную развязку.

Диодный мост вместе с транзисторами крепятся на общий радиатор.
Оптроны ОС2-4 используются для дублирования кнопок управления. ОС-1 предназначен для пользовательских функций (сигнализации и т.п.)

Трансформатор устанавливать на однофазный частотный преобразователь для электродвигателя не обязательно. Допустимо воспользоваться токовым шунтом, представляющим собой четыре витка манганинового провода с сечением 0,5 миллиметров на оправе 3 миллиметра. Усилитель DA-1 можно подключить к этому же шунту.
Двигателю на 400Вт не потребуется термодатчик. Для измерения напряжения сети может использоваться DA-1-2 (усилитель).
Кнопки изолируются пластмассовыми толкателями, для управления используется опторазвяка.

На заметку. Длинные провода нужно снабдить помехоподавляющими кольцами.

Регулировка вращения ротора двигателя вмещается в диапазон частоты 1:40. Для малых частот необходимо фиксированное напряжение (IR компенсация).

Частотные преобразователи со звеном постоянного тока

Это устройства, выполненные по транзисторной или тиристорной схеме. Однако их основная отличительная особенность состоит в том, что корректная и безопасная работа частотника требует наличия звена постоянного напряжения. Поэтому для подключения их к промышленной сети требуется выпрямитель. Обычно, применяются комплектное оборудование, состоящее из частотного преобразователя и выпрямителя, регулируемые от одной системы управления.

В ПЧ этой группы применяется двухступенчатое преобразование электроэнергии: синусоидальное U вх с f = const выправляется в выпрямителе (В), отфильтровывается фильтром (Ф), разглаживается, и далее заново преобразуется инвертором (И) в U ̴. Ввиду двухступенчатого преобразования электроэнергии снижается КПД и несколько ухудшаются массогабаритные показателив сравнении с преобразователями частоты с непосредственной связью.

Для создания синусоидального U ̴ самоуправляющиеся преобразователи частоты. В качестве ключевой базы в них используются усовершенствованная тиристорная и транзисторная основа.

Основным преимуществом тиристорной преобразовательной аппаратуры считается возможность оперироватьс большими параметрами сети, с выдерживанием при этом продолжительной нагрузки и импульсных воздействий. Аппараты обладают более высоким КПД.

Частотные преобразователи на тиристорах на сегодня превосходят остальные высоковольтные приводы, мощность которых исчисляется десятками МВТ с U вых от 3до 10 кВ и более. Однако и цена на них соответственно наибольшая.

Преимущества:

  • наибольший КПД;
  • возможность использования в мощных приводах;
  • приемлемая стоимость, невзирая на внедрение добавочных элементов.

Низковольтный ПЧ на IGB транзисторах. Устройство, особенности

Рисунок 3 показывает блочную схему и функции основных узлов. После каждого из них, отображены линии выходных параметров электроэнергии. Подаваемая энергия (Uвх.), в форме синусоиды, неизменной амплитуды, частоты. Дальше — узел постоянного тока, состоящий из неуправляемого или регулируемого выпрямителя 1. Емкостного фильтра 2, с функциями сглаживания пульсации (U выпр.). Потом, сигнал Ud поступает на независимый, автономный инвертор 3, работающий с нагрузкой, которая потребляет ту же частоту.

Он преобразует одно или 3-фазный ток постоянной величины в переменный, имеет приемлемый уровень гармоник, добавленных к выходному напряжению. Собранный на полностью регулируемых полупроводниковых приборах IGBT. Сигналы СУ подсоединяют обмотку электродвигателя к соответствующим полюсам, используя силовые транзисторы. Подключение происходит в период импульсов, моделируемых по синусоиде амплитудой и частотой. Управляемые выпрямители (1) регулируют величину Ud. Функцию сглаживания выполняет электрофильтр (4).

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

Популярные статьи  Как сделать дециметровую антенну своими руками?

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

— Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

— Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

— Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор; В – трехфазный мостовой выпрямитель;

Частотный преобразователь для электродвигателя: назначение и функции

Инверторный преобразователь частоты — электронное устройство для изменения частоты электрического тока и напряжения. Пределы изменений солидные. Частота может меняться от 1 Гц до 500 Гц. И это не максимум, а предел регулировки нормального частотника. Современные частотные инверторы делают на основе электроники, что позволяет точно поддерживать частоту и напряжение. При желании можно создать условия для плавного старта. Все это позволяет применять относительно недорогие электромоторы постоянного тока там, где раньше это было невозможно.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Некоторые частотные преобразователи управляются микропроцессорами

Частотный инвертор с асинхронным электромотором

Асинхронные двигатели при включении потребляют в разы больше энергии чем при штатной работе. Пусковые токи могут быть в 6-8 раз выше рабочих. Такие мгновенные скачки просаживают сеть. Напряжение резко падает, потом также скачкообразно восстанавливается. При включении особо мощного движка, сетевые параметры изменяются настолько сильно, что воспринимаются чувствительной техникой как пропадание. В результате перезапускается компьютерная техника, моргают или совсем гаснут лампы, перегорают блоки питания у котлов отопления и т.д.

Раньше остроту проблемы снижали установкой конденсаторов, которые сглаживали скачки. Но конденсаторы требуются большой емкости — по 70 мкФ на каждый киловатт мощности, плюс такую же емкость необходимо подключать для нейтрализации пускового тока. Но даже в этом случае скачки были, как и перегрузки двигателя на старте. К тому же подключение через емкость «съедало» значительную часть мощности мотора. Для компенсации потери необходимо было покупать более мощные агрегаты, ставить более мощные пусковые конденсаторы. В общем, решение не лучшее, но другого по сути, не было.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Преобразователи частоты выбирают по мощности подключаемого оборудования (должен быть запас не менее 20%) и по току (тоже с запасом)

С появлением преобразователей частоты (ПЧ) проблема решается намного эффективнее. Основная функция этого оборудования — плавный и постепенный разгон двигателя с нуля до полной мощности. На протяжении определенного промежутка времени (может задаваться, а может быть фиксированной величиной), подаваемый на двигатель ток плавно изменяет свои параметры, выводя движок на рабочий режим. Никаких перегрузок, влияния на сети. И конденсаторы не нужны, значит мощность двигателя может быть примерно на 40% меньше чем раньше (именно настолько она снижалась с конденсаторами). Точно так же, постепенно, происходит отключение. Электромотор постепенно замедляется, затем останавливается. В общем, частотный преобразователь для электродвигателя продлевает срок его эксплуатации, убирает проблему пусковых токов, стабилизирует параметры сети.

Что дает применение частотного инвертора с синхронным двигателем

Синхронные электродвигатели постоянного тока имеют несложное устройство, после выхода на требуемую скорость работают стабильно. Недостатки — сложности с пуском и невозможность регулирования частоты вращения вала. Проблему пуска давно научились обходить — делают асинхронную пусковую обмотку, которой разгоняют до нужной частоты. А вот невозможность менять скорость очень сильно ограничивает область применения. Не так много устройств, в которых нет необходимости в разных скоростных режимах работы двигателя. Это вентсистемы, кулеры.

Преобразователь частоты — векторный, однофазный, схемы и инструкции

Таблица с несколькими моделями, их параметрами и ценами

Если с синхронным электродвигателем использовать частотный преобразователь, проблема изменения скоростей решается на раз. Причем эта связка  работает настолько удачно, что японцы уже выпустили новые электропоезда на такой тяге. Стало появляться и другое подобное оборудование. Причем не только тяговое — новые электроинструменты некоторые производители стали выпускать с такими моторами. Да, стоит такое оборудование дороже, но имеет хороший КПД, работает стабильно.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: