Индукция магнитного поля

Формулы расчёта

Пришла пора нам перейти к основной теме статьи. Начнём мы с того, что расскажем о том, как произвести расчет индуктивности катушки без сердечника. Это самый простой вид расчёта. Но тут тоже есть свои тонкости. Возьмём, для простоты, катушку, обмотка которой лежит одним слоем. Для неё справедлив расчет однослойной катушки индуктивности:

L=D2*n2/(45D+100l).

Здесь L — индуктивность, D — диаметр катушки в сантиметрах, n — число витков, l — длина намотки в сантиметрах. Однослойная катушка предполагает то, что толщина намотки будет не больше одного слоя, а значит, для неё справедлив расчет плоской катушки индуктивности. В целом большинство формул для расчётов индуктивностей очень похожи: существенные различия только в коэффициентах при переменных в числителе и знаменателе. Самым простым тут является расчет индуктивности катушки без сердечника.

Представляет интерес также формула расчета индуктивности катушки с большим числом витков:

L=0,08*D2*n2/(3*D+9*b+10*c).

Здесь b — ширина провода, c — его высота. Такая формула эффективна для того, чтобы произвести расчет многослойной катушки индуктивности. Применяется она на практике чуть менее часто, чем та, о которой пойдёт речь ниже.

Самым актуальным, пожалуй, будет расчет индуктивности катушки с сердечником. Есть специальная формула, которая показывает, что эта индуктивность определяется материалом, из которого сделан сердечник, а точнее — его магнитной проницаемостью. Выглядит эта формула так:

L=m*m*n2*S/l,где m — магнитная проницаемость материала сердечника, m- магнитная постоянная (она равна 12,56·10-7 Гн/м), S — площадь поперечного сечения катушки, l — длина намотки.

Расчет витков катушки индуктивности производится очень просто: это число намотанных на сердечник слоёв проводника.

Мы разобрались с формулами, а теперь немного о том, где же конкретно эти формулы и расчёты могут нам пригодиться.

Индукция магнитного поля

Какие параметры есть у катушки?

Катушка обладает несколькими физическими характеристиками, отражающими её качество и пригодность для той или иной работы. Одной из них является индуктивность. Она численно равна отношению потока магнитного поля, создаваемого катушкой, к величине этого тока. Индуктивность измеряется в Генри (Гн) и в большинстве случаев принимает значения от единиц микрогенри до десятков Генри.

Индуктивность является, пожалуй, самым важным параметром катушки. Поэтому неудивительно, что большинство людей даже не думают о том, что существуют другие величины, способные описывать поведение катушки и отражать её пригодность для того или иного применения.

При выборе катушки индуктивности профессионалы также обращают внимание на сопротивление потерь. Как можно понять из этого словосочетания, оно отражает величину потерь электроэнергии, происходящих вследствие паразитных эффектов, таких как, например, нагревание проводов, происходящее по закону Джоуля-Ленца

Нетрудно понять, что чем ниже это значение для катушки, тем она лучше.

Ещё один параметр, который необходимо учитывать, — добротность контура. Она тесно связана с предыдущим параметром и представляет собой отношение реактивного сопротивления к активному (сопротивлению потерь). Соответственно, чем выше добротность — тем лучше. Её повышение достигается за счёт выбора оптимального диаметра провода, материала и диаметра сердечника, числа обмоток.

Сейчас рассмотрим подробнее самый важный и наиболее волнующий нас параметр — индуктивность катушки.

Индукция магнитного поля

1.21. Самоиндукция. Энергия магнитного поля window.top.document.title = «1.21. Самоиндукция. Энергия магнитного поля»;

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно препятствует изменению тока в контуре.

Собственный  Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб:

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

In = N / e

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

VSlIсм. § 1.17

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно закона Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.


Индукция магнитного поля
Рисунок 1.21.1.Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2 R Δt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ (I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.


Индукция магнитного поля
Рисунок 1.21.2.Вычисление энергии магнитного поля

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

V

объемной плотностью магнитной энергииДж. Максвелл

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

Индукция магнитного поляИзображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Популярные статьи  Почему расплавился новый электрочайник?

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Магнитное поле и его графическое изображение

Камни, способные притягивать предметы из железа, назвали в честь острова, на котором они были найдены – магнитами. А их свойство располагаться в пространстве определенным образом легло в основу создания магнитного компаса. Понимание того, как работает данное устройство необходимо для дальнейшего изучения материала.

Итак, схема простейшего магнитного компаса приведена на рисунке. Он состоит из тонкой иглы, на которой располагается маленький магнит в форме ромба. Этот магнит может свободно вращаться на игле.

Как уже было сказано ранее, при отсутствии внешнего воздействия магниты ориентируются в пространстве всегда определенным образом: одним концом по направлению к Северному полюсу Земли (по аналогии этот конец камня называют северным полюсом и обозначают синим цветом); а другим концом по направлению к Южному (южный полюс магнита обозначают красным).

Индукция магнитного поля

Рисунок 1(а) – Магнитная стрелка (вид сверху)

Рисунок 1(б) – Схема простейшего компаса

В 1820 году Ганс Христиан Эрстед проводил лекцию, на которой демонстрировал выделение тепла на проводнике с током: пропускал через длинный проводник ток, в следствие чего проводник нагревался. В перерыве между занятиями любопытные студенты начали включать и выключать установку и случайно заметили, что при прохождении тока по проводнику магнитная стрелка, находившаяся неподалеку, приходит в движение. Студенты поделились наблюдением с Эрстедом, которого очень заинтересовало данное явление, и он начал его исследовать. Опыты, которые он проводил, позднее назвали опытами Эрстеда. Они стали первым доказательством связи электрического тока с магнитными свойствами.

Рассмотрим опыт, проведенный Эрстедом. Под длинным проводником, включенным в цепь, ставили магнитную стрелку (см. рисунок 2).

Индукция магнитного поля

Рисунок 2 – Схема опыта Г.Х. Эрстеда

Когда в проводнике начинает течь ток, магнит поворачивается до положения перпендикулярно проводнику. Направление его зависело от того, куда направлен ток. На рисунке 3 приведен проводник с током, направление которого указано белой стрелкой. В таком случае магнитная стрелка ориентировалась синим концом влево.

Индукция магнитного поля

Рисунок 3 – Магнитная стрелка ориентировалась относительно проводника

Если в установке на рисунке 3 поменять местами полюса источника (ток будет течь в противоположную сторону), стрелка повернется красным концом влево.

То есть ток воздействует на стрелку из магнита. Непосредственного контакта между стрелкой и проводником нет (они не касаются друг друга), значит воздействие осуществляется с помощью поля*, которое впоследствии назвали магнитным.

Важно отметить, что магнитное поле:

  • воздействует на движущиеся заряженные частицы и вещества, обладающие свойствами магнитов;
  • порождается движущимися заряженными частицами или веществами-магнитами.

*Напоминание: поле – это такая материя, которую нельзя увидеть или почувствовать органами чувств, однако можно обнаружить его действие на какие-либо объекты.

Поскольку поле нельзя увидеть или почувствовать, но описывать и представлять нужно, было решено изображать магнитное поле схематично — в виде линий.

Линии магнитного поля (они же магнитные линии) – это мысленно проведенные линии по касательной, к которым ориентировались бы магнитные стрелки (эти линии являются воображаемыми, в действительности их, конечно, не существует). Они являются графическим изображением магнитного поля и имеют направление туда же, куда и северный полюс магнитной стрелки.

На рисунке 4 можно увидеть линии поля прямоугольного магнита. Такой тип магнитов часто называют полосовыми (от слова «полоса»).

Индукция магнитного поля

Рисунок 4 – Магнитные линии поля прямоугольного магнита

Свойства магнитных линий:

  • выходят из северного полюса магнита (т.е. начинаются на нем);
  • входят в южный (заканчиваются на нем);
  • являются или замкнутыми, или уходящими в бесконечность (начинающимися в бесконечности).

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB

dB = µ0 *I*dl*sin α /4*π*r2,

где

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

В = µ* µ0*2*I/4*π*r.

Для кругового движения она выглядит так:

В = µ*µ0*I/4*π*r.

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

B→= B1→+ B2→+ B3→… + Bn→

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В  СГС магнитный поток измеряется в максвеллах (Мкс):

108 Мкс = 1 Вб.

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

φ = |B*S| = B*S*cosα,

где

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900). Магнитный поток

Магнитный поток

Популярные статьи  Почему горит новая проводка, после замены в старом деревянном доме?

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Понятие самоиндукции

При протекании электрического тока по замкнутому контуру вокруг него формируется постоянно меняющееся магнитное поле, что способствует формированию электродвижущей силы.

Определение 3

Явление возникновения тока индукции в замкнутом контуре называют самоиндукцией.

Самоиндукция не дает току контура меняться. При появлении самоиндукции применяют другой способ подсоединения и использования электроцепи. В цепь включают резистор и катушку индуктивности с железной серцевиной. Еще включают электролампы при помощи последовательного соединения. В данной ситуации при постоянном токе сопротивление резистора совпадает с сопротивлением катушки, что способствует интенсивному свечению электролампочек.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Решение задач Контрольные работы Эссе

Эффект самоиндукции на сегодняшний день широко применяется в электротехнике.

Упрощенная формула расчета индуктивности:

\(L={F\over I}.\)

Зная индуктивность, можно вычислить ряд важных параметров электроцепи, например, ЭДС самоиндукции. Формула для ее расчета выглядит следующим образом:

\(E_i=- {LdI\over dt}.\)

Эта формула показывает зависимость электродвижущей силы от индукции. Данные величины будут иметь одинаковое значение, если ток за 1 секунду изменится на 1А.

Зная индуктивность можно также вычислить энергию магнитного поля:

\(W= {LI^2 \over 2}.\)

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

Ɛi — ЭДС индукции

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

Ɛi — ЭДС индукции

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Ɛi — ЭДС индукции

I — сила индукционного тока

R — сопротивление контура

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

Ɛi — ЭДС индукции

B — магнитная индукция

v — скорость проводника [м/с]

l — длина проводника

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Показатель добротности

Добротность – это отношение между реактивным и индуктивным (активным) сопротивлением.

Активное – это показатель естественного сопротивления материала. Реактивное возникает, если изменения действующего значения напряжения, тока или емкости.

Для измерения используется следующее уравнение:

Q=2∙π∙f∙L/R,

Где:

  • π– число Пи, равное 3,14;
  • F – частотность;
  • R – сопротивление.

Индукция магнитного поля

Как правило, колебательный контур состоит из источника питания, индукционного элемента и конденсатора. Определяется частота по формуле Томсона (она же формула резонансной частоты).

Чем выше показатель частотности, тем «добротнее» считается катушка.

Магнитный поток

Магнитный поток – это скалярная величина, которая характеризует влияние магнитной индукции на данный металлический контур.

Магнитная индукция определяется количеством силовых линий, пересекающих 1 см2 металлического сечения.

Магнитометры, используемые для его измерения, называются теслометрами.

Индукция магнитного поля

После прекращения движения электронов в катушке сердечник, если он сделан из мягкого железа, теряет свои магнитные свойства. Если он изготовлен из стали, он может некоторое время сохранять свои магнитные свойства.

Индукция магнитного поля

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентирован по магнитному меридиану Земли. Конец, указывающий на север, называется северным полюсом (N), а противоположный конец – южным полюсом (S). Поднося два магнита ближе, мы замечаем, что одноименные полюса отталкиваются друг от друга, а противоположные – притягиваются (рис. 1).

Индукция магнитного поля

Если мы разделим полюса, разрезав постоянный магнит на две части, мы обнаружим, что каждая из них также будет иметь по два полюса, то есть это будет постоянный магнит (рис. 2). Оба полюса – север и юг – неотделимы друг от друга, равны.

Магнитное поле, создаваемое Землей или постоянными магнитами, представлено, как электрическое поле, магнитными силовыми линиями. Изображение силовых линий магнитного поля магнита можно получить, положив поверх него лист бумаги, на который ровным слоем насыпают железные опилки. Попадая в магнитное поле, опилки намагничиваются: у каждого из них есть северный и южный полюс. Противоположные полюса имеют тенденцию сближаться, но этому препятствует трение опилок о бумагу. Если вы коснетесь бумаги пальцем, трение уменьшится, и опилки будут притягиваться друг к другу, образуя цепочки, которые представляют собой силовые линии магнитного поля.

На рис. 3 показано положение в поле прямого магнита из опилок и маленькие магнитные стрелки, указывающие направление силовых линий магнитного поля. Это направление принимается за направление северного полюса магнитной стрелки.

Катушка индуктивности

От чего зависит индуктивность

Катушкой индуктивности является компонент, состоящий из проводника, намотанного на сердечник, содержащий железо, либо без сердечника. Прибор мультиметр, или LC-метр, ответит на вопрос, как измерить индуктивность катушки. Этим прибором, в основном, пользуются радиолюбители.

Индукция магнитного поля
Катушки индуктивности в виде тора и цилиндра

К исключительным классам катушек индуктивности относятся дроссели. Дроссель –это такая катушка, целью которой выступает создание в цепи огромного противодействия для переменного тока с целью подавления высокочастотных токов. Постоянный ток через такой дроссель проходит, не встречая препятствия.

При выборе конкретной катушки индуктивности необходимо обратить внимание на некоторые важные параметры, влияющие на работу компонента:

  1. Необходимый показатель индуктивности;
  2. Предельный ток, на который рассчитан компонент;
  3. Допустимый разброс характеристики катушки;
  4. Отклонение параметра при колебании температуры;
  5. Устойчивость характеристики катушки;
  6. Активное сопротивление провода обмотки катушки;
  7. Добротность компонента;
  8. Диапазон частот, при которых катушка работает без потерь.

Свое применение катушки индуктивности нашли, как в аналоговой, так и цифровой схемотехнике. Конструкция, собранная на катушках индуктивности и конденсаторах, именуемая колебательным контуром, способна усиливать или вырезать колебания определенной частоты. Использование дросселей в каскадах блоков питания позволяет устранить остатки помех и шумы. Построение таких компонентов, как трансформатор, полностью обязано физическим особенностям катушки индуктивности. Также катушки индуктивности подразделяются на компоненты с постоянным показателем индуктивности и катушки с переменным показателем индуктивности. Телефонные аппараты, сглаживающие фильтры, цепи высоких частот имеют в своем составе катушки с постоянным значением индуктивности. В свою очередь, резонансные цепи ВЧ и ВЧ тракты приемных устройств в своем составе имеют катушки с переменным значением индуктивности.

Популярные статьи  Устройство и принцип действия паяльных индукционных станций

Предоставленный материал в полной мере объясняет физические явления: индукция, магнитный поток и индуктивность. В статье рассмотрены разные виды катушек индуктивности, принципы их построения и особенности применения.

Что такое катушка индуктивности?

Мы сталкиваемся с этими предметами постоянно, но вряд ли придаём им какое-то особое значение. Это для нас обыденность. На самом деле катушки индуктивности встречаются сегодня практически в каждом приборе, но наиболее яркий пример их использования — трансформаторы. Если вы думаете, что трансформаторы бывают только на энергетических подстанциях, то вы сильно ошибаетесь: ваше зарядное устройство от ноутбука или смартфона — тоже своего рода трансформатор, только меньшего размера, чем те, что используются на электростанциях и распределительных подстанциях.

Любая катушка индуктивности состоит из сердечника и обмотки. Сердечник представляет собой стержень из диэлектрического или ферромагнитного материала, на который наматывается обмотка. Последняя делается чаще всего из медной проволоки. Количество витков обмотки напрямую связано с величиной магнитной индукции полученной катушки.

Теперь, прежде чем рассмотреть расчет индуктивности катушек и формулы, необходимые для него, поговорим о том, какие параметры и свойства мы будем вычислять.

Индукция магнитного поля

Открытие электромагнитной индукции

Практически сразу с момента открытия электрического тока было выявлено, что ток, проходящий по проводнику, создает магнитное поле.

Логично было предположить, что магнитное поле тоже может создать движение электрических зарядов в проводнике. Многие ученые безуспешно бились над этой задачей. Однако, электрические заряды, помещенные в постоянное магнитное поле, никак на него не реагировали.

Открытие было сделано М. Фарадеем 29 августа 1831 года (редкий случай, когда точно известна дата открытия).

Рис. 1. М. Фарадей.

В опыте использовались две катушки – одна создавала магнитное поле, вторая была расположена рядом, так, чтобы сквозь нее проходили магнитные линии первой катушки. Вторая катушка была подключена к гальванометру, который был предназначен для определения возникающего в ней электрического тока.

Рис. 2. Опыт Фарадея с двумя катушками.

Опыт давал отрицательный результат, постоянное поле, пронизывающее вторую катушку, не создавало в ней электрического тока, сколько бы времени не прошло. Но, Фарадей заметил, что перед самым опытом, в момент пуска электрического тока через первую катушку, стрелка гальванометра давала слабое колебание

Порядок опыта был перестроен – теперь главное внимание было уделено моменту включения. И выяснилось, что включение и выключение тока через первую катушку вызывает возникновение импульса тока во второй катушке. В дальнейшем было определено, что для появления импульса можно не только включать и выключать магнитное поле другой катушкой, а, к примеру, приближать и удалять обычный постоянный магнит

В дальнейшем было определено, что для появления импульса можно не только включать и выключать магнитное поле другой катушкой, а, к примеру, приближать и удалять обычный постоянный магнит.

Причем, возникающий ток (как и любой ток в проводнике) создает свое магнитное поле, а направлен он так, чтобы возникающее магнитное поле препятствовало причине, создавшей ток в контуре. Данное правило было позже открыто русским физиком Э.Ленцем.

Многие исследователи, разрабатывавшие теорию электричества, такие, как Х.Эрстед, Ж.Колладон, Дж.Генри, были близки к открытию. Но колебание стрелки в момент запуска или выключения установки они либо вообще не замечали, либо расценивали, как результат случайных внешних сотрясений и не придавали ему значения.

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе наиболее важными являются:

  • Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:
    B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int \limits _{L_{1}}{\frac {I\left({\vec {r}}_{1}\right){\vec {dL_{1}}}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
    B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int {\frac {{\vec {j}}\left({\vec {r}}_{1}\right)dV_{1}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
  • Теорема Ампера о циркуляции магнитного поля:
    ∮∂S⁡B→⋅dl→=μIS≡μ∫Sj→⋅dS→,{\displaystyle \oint \limits _{\partial S}{\vec {B}}\cdot {\vec {dl}}=\mu _{0}I_{S}\equiv \mu _{0}\int \limits _{S}{\vec {j}}\cdot {\vec {dS}},}
    rotB→≡∇→×B→=μj→.{\displaystyle \mathrm {rot} \,{\vec {B}}\equiv {\vec {\nabla }}\times {\vec {B}}=\mu _{0}{\vec {j}}.}

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{\displaystyle {\vec {B}}}:

Три из четырех уравнений Максвелла (основных уравнений электродинамики)

divE→=ρε,   rotE→=−∂B→∂t{\displaystyle \mathrm {div} \,{\vec {E}}={\frac {\rho }{\varepsilon _{0}}},\ \ \ \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}}
divB→=,    rotB→=μj→+1c2∂E→∂t{\displaystyle \mathrm {div} \,{\vec {B}}=0,\ \ \ \ \,\mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}}
а именно:

Закон отсутствия монополя:

divB→=,{\displaystyle \mathrm {div} \,{\vec {B}}=0,}

Закон электромагнитной индукции Фарадея:

rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},}

Закон Ампера — Максвелла:

rotB→=μj→+1c2∂E→∂t.{\displaystyle \mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}.}

Формула силы Лоренца:

F→=qE→+qv→×B→,{\displaystyle {\vec {F}}=q{\vec {E}}+q\left,}
Следствия из неё, такие как

Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)

dF→=Idl→×B→,{\displaystyle d{\vec {F}}=\left,}
dF→=j→dV×B→,{\displaystyle d{\vec {F}}=\left,}

выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):

M→=m→×B→,{\displaystyle {\vec {M}}={\vec {m}}\times {\vec {B}},}

выражение для потенциальной энергии магнитного диполя в магнитном поле:

U=−m→⋅B→,{\displaystyle U=-{\vec {m}}\cdot {\vec {B}},}
  • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
  • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
F→=Kqmr→r3.{\displaystyle {\vec {F}}=K{\frac {q_{m}{\vec {r}}}{r^{3}}}.}

(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).

Выражение для плотности энергии магнитного поля

w=B22μ{\displaystyle w={\frac {B^{2}}{2\mu _{0}}}}

Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: