Что такое разделительный трансформатор: конструкция, принцип действия

Когда нужны трансформаторы тока?

Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

  1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
  2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
  3. Используются для учета электроэнергии с помощью счетчика.

На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

https://youtube.com/watch?v=FoZehRt5jEU

Классификация и расчет

Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

  1. Для измерения показателя счетчика.
  2. Для защиты электрооборудования.

Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:

  • предназначенные для работы на открытом воздухе;
  • функционирующие в закрытом помещении;
  • используемые в качестве встроенных элементов электрооборудования;
  • накладные, предназначенные для для проходного изолятора;
  • переносные, дают возможность осуществлять расчет в любом месте;

Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

  • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
  • бумажно-масляную;
  • газонаполненную;
  • залитую компаундом;

Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

  • номинальное напряжение сети;
  • параметр номинального тока первичной и вторичной обмотки;
  • коэффициент трансформации;
  • класс точности;
  • особенности конструкции;

При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.

Подключение счетчика через трансформаторы тока представлено на это фото

Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

Как осуществляется подключение измерительного ТТ тока для счетчика?

Обозначение на схеме

Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

ТИПЫ РАЗДЕЛИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ

Не существует принципиальной конструктивной разницы между силовыми трансформаторами напряжением до 1000 вольт общего назначения и трансформаторами, применяемыми для разделения электрических цепей, то есть, разделительными.

Любой трансформатор обеспечивает гальваническую развязку между первичными и вторичными цепями напряжения по определению.

ГОСТ 30030-93 не предъявляет к разделительным трансформаторным устройствам особых конструктивных требований, которым не удовлетворял бы обычный силовой трансформатор. Так, наличие не менее чем двойной изоляции между электрическими цепями первичной и вторичной обмоток присутствует в любом трансформаторе, а не только в разделительном.

Таким образом, разница заключена только в функциональном назначении устройств.

Разделительные трансформаторы могут быть понижающими, повышающими, а также имеющими коэффициент трансформации 1. Наиболее часто встречаются разделительные устройства этого типа, преобразующие напряжение без изменения его величины, например 220/220 В, 380/380 В.

Изменение уровня напряжения в процессе разделительной трансформации осуществляется с целью обеспечить питанием электроприборы, требующие других номиналов напряжения, отличных от сетевого.

Преобразователи напряжения, служащие в качестве источников питания цепей сверхнизкого напряжения классифицируются ГОСТ как безопасные разделительные трансформаторы. Сверхнизким считается электрическое напряжение, уровень которого не превышает 50 вольт.

Такие источники напряжения могут использоваться для подключения следующих устройств:

  • ламп переносного типа;
  • низковольтного ручного электроинструмента и аппаратуры;
  • детских электрифицированных игрушек.

МЕДИЦИНСКИЕ РАЗДЕЛИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Отдельную категорию приборов представляют разделительные медицинские трансформаторы. Применение этих устройств обусловлено особыми требованиями, предъявляемыми к организации цепей электропитания отдельных медицинских учреждений.

Помещения медицинских учреждений разделены на несколько групп по признакам опасности нарушения режима электропитания и общей электробезопасности.

В частности, помещения, относящиеся к группе 2 (операционные и реанимационные отделения, а также другие помещения, имеющие системы жизнеобеспечения) требуют обязательного применения электрических цепей питания с изолированной от земли нейтралью. Выполнение этого требования достигается путём применения специализированных медицинских трансформаторов.

Электроснабжение системы IT медицинских объектов 2 группы должно также сопровождаться применением устройств автоматического контроля изоляции электрических цепей от земли.

Это объясняется малой величиной токов утечки на землю, возникающих в сетях IT при однофазных замыканиях на землю. Проблема обнаружения повреждений такого рода в сетях с изолированной от земли нейтралью и стала причиной отказа от массового их применения.

При замыкании на землю одной из фаз режим работы оборудования практически не изменяется, уровень напряжения остаётся в норме, поэтому электросеть может длительно находиться в таком состоянии. Однако прикосновение к частям находящимся под напряжением как прямое, так и косвенное перестаёт при этом быть безопасным.

Применение же сложной высокочувствительной автоматики, к которой относятся системы контроля изоляции цепей электроснабжения для массового потребителя практически невозможно.

Кроме этого, сложность применения систем электроснабжения IT заключается в необходимости постройки заземляющего устройства на стороне потребителя. Корпуса оборудования в случае применения IT должны быть соединены с землёй.

Область применения

Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

Инвертирующие агрегаты имеют транзисторы одинаковой проводимости и на выходе усиливают только часть сигнала. Для полного преобразования напряжения импульс подается на оба транзистора.

Согласующее оборудование используют для подсоединения к электронным приборам с высоким сопротивлением на входе и выходе нагрузки с низким показателем прохождения электричества. Агрегаты полезны в высокочастотных линиях, где разница величин ведет к потерям энергии.

Что такое разделительный трансформатор: конструкция, принцип действияСмотрите это видео на YouTube

Виды трансформаторов по типу магнитопровода

Магнитопровод — это устройство, которое усиливает магнитные потоки, возникающие от электротока в обмотках трансформаторов. 

Магнитопроводы (сердечники) являются неотъемлемыми частями различного электрооборудования: катушек индуктивности, реле и пр.

В современном мире существуют различные конструкции трансформаторов, созданных под определенные цели и передачу напряжения разной мощности. 

По типу сердечников устройства бывают:

  • стержневого типа (применяются, как правило, для трехфазных трансформаторов);
  • броневого типа (для трехфазных приборов);
  • тороидального типа (используются в трансформаторах, расположенных в различных электротехнических устройствах).

В стержневом типе используются вертикальные сердечники со ступенчатым сечением, которые образуют окружность с горизонтальными ярмами (часть стержней без обмоток). Обмотки в таких магнитопроводах находятся на вертикальных элементах. Система сердечника представляет собой замкнутую цепь.

В броневом типе сердечники имеют форму прямоугольника в сечении и располагаются в горизонтальном положении. Обмотки также выполнены в прямоугольной форме. Такая конструкция довольно сложная в изготовлении, поэтому используется нечасто, на специальных видах устройств. 

В тороидальном (кольцевом) типе используют кольцевые ленточные сердечники. Их применяют для создания силовых однофазных трансформаторов. Сердечники делают из электротехнической стали толщиной 0,3 и 0,35 мм, изготовленной по специальной технологии. Материалом для тороидальных магнитопроводов являются феррит или карбонильное железо. Такие сердечники широко распространены в радиоэлектронике.

Конструкции магнитопроводов отличаются способами соединения сердечников с частью стержней, на которых нет обмотки. 

  • В стыковом соединении части магнитопроводов собирают раздельно. Сначала на вертикальные сердечники устанавливаются обмотки, затем они соединяются при помощи шпилек с верхними ярмом. Монтируется нижнее горизонтальное ярмо. В такой конструкции можно легко поменять обмотки.
  • В шихтованном соединении стержни и ярма представляют собой слоенные плиты. Соединение деталей осуществляется вхождением элементов друг в друга в промежутки между слоями сердечника. Такая конструкция более сложная в сборке.

Преимущества и область применения

Изолирующие трансформаторы получили широкое применение практически во всех сферах электротехники. Они предоставляют пользователю широкий спектр специфических преимуществ в зависимости от отрасли, где они используются:

  • устройства с коэффициентом трансформации 1:1 применяются в электросетях переменного тока без необходимости дополнительного заземления и изоляции периферийного оборудования;
  • изоляция цепей постоянного тока в линиях связи. В случае необходимости использования усилителей сигнала применение РТ дает возможность отделить постоянный ток для подключения усилителя от компонентов информационного электроимпульса;
  • повышение безопасности эксплуатации электрооборудования. Минимизирует риск фатального поражения электрическим током, отделяя пользователь или оператора от высокомощных источников;
  • при тестировании, сервисном обслуживании или ремонте оборудования дает возможность проводить работы на включённых устройствах. При этом используются разделительные трансформаторы с коэффициентом 1:1, но имеющие небольшую мощность напряжения вторичной цепи;
  • отфильтровывают (отсекают вне рабочего диапазона) искаженную синусоидальную форму напряжения, приводя ее к правильной. Снижают негативное влияние широтно-импульсных модуляций;
  • нейтрализует широкий спектр шумов, образующихся при подключении аудиоустройств (усилителей) к динамикам.

Будет интересно Масляные трансформаторы – что это такое, устройство и принцип работы

Использование разделительных трансформаторов обусловлено эксплуатационными требованиями и спецификой применения электросетей:

  1. Высокая влажность или присутствие воды в помещении, наличие металлических изделий без заземления либо со слабым заземлением: ванные и душевые комнаты, силовые коммутационные шкафы, расположенные на улице, кабельные колодцы, подвалы и полуподвалы.
  2. Удалённые посты слежения, измерения и контроля в медицинских учреждениях, дата и колл-центрах, а также других учреждениях, где необходимо повышение уровня защиты персонала и безопасности эксплуатации оборудования.
  3. Эксплуатация электроинструмента и оборудования, относящегося к первому классу безопасности.

Установка эксплуатации электрических приборов через разделительный трансформатор необходима в следующих случаях:

  • при подключении устройств электропотребления, не имеющих потенциала заземления;
  • в импульсных электросетях, требующих повышения показателей изоляции. В особенности в медицинском и лабораторном оборудовании;
  • при лабораторных испытаниях электрических и электронных устройств для обеспечения безопасности персонала.

При использовании разделительного трансформатора также необходимо применять для эксплуатируемой цепи устройство защитного отключения (УЗО). Несмотря на высокую надежность и безопасность возможны случаи повреждения изоляции.

При этом потенциал может быть выведен на корпус устройства и появится вероятность поражения электрическим током, если коснуться корпуса и металлического проводника, связанного с землёй. Именно поэтому разделительные трансформаторы рекомендуется подключать через УЗО. Трансформатор разделительный однофазный в зависимости от его конструкции, можно использовать в следующих случаях:

  1. При наличии крепежных пластин и открытых клеммных колодок. Установка в монтажный шкаф. При этом может быть реализована вертикальная или горизонтальная схема установки или специальные крепежи для монтажа на din-рейку.
  2. При отсутствии клеммных колодок – выведение вторичной обмотки через ответвление кабеля. Применяется как составная часть электрооборудования, установок любого назначения.
  3. Переносной вариант при наличии корпуса, розетки и выключателя. Дополнительно может быть доукомплектован кабелем (удлинителем).

Трёхфазный разделительный трансформатор – фактически является тремя однофазными устройствами, установленными на одной монтажной планке:

  • открытый вариант как горизонтального и вертикального расположения с соединением в звезду или треугольник;
  • расположение элементов в корпусе, в том числе герметичном.
  • Разделительный трансформатор является нужным и полезным устройством, особенно в домашней мастерской. Его можно использовать в режиме пониженного переменного напряжения для проверки высоковольтных устройств.

Трехфазные разделительные трансформаторы.

К примеру, подключение схемы на 220 V к источнику питания на 36V позволит безбоязненно прослеживать протекание в тестируемых цепях тока.

При этом допускается использование любых унифицированных разделительных трансформаторов, так как современные электронные устройства не отличается большим потреблением.

Принцип действия устройства

Функционирование разделительного понижающего трансформатора низкого напряжения основано на эффекте гальванической развязки. Технически, это реализовано в виде автономного функционирования обеих катушек. Катушки устройства разделены физически, то есть не соприкасаются между собой.

Это обеспечивает безопасную эксплуатацию при условии, что контуры не будут закорочены в результате механического воздействия. Чтобы полностью исключить возможность контакта обмотки изолируют несколькими слоями высококачественной изоляции.

Популярные статьи  Расчет мощности трехфазного тока

Что такое разделительный трансформатор: конструкция, принцип действия
Схема разделительного трансформатора.

Проходя через первичную обмотку, ток индуцирует электроэнергию во вторичной катушке, к которой и подключаются цепи с потребляющим оборудованием. Вторичная обмотка РТ или устройства к ней присоединенные не могут иметь контакта с землей или нейтралью.

Будет интересно Что такое трансформаторная подстанция

Значительное повышение безопасности эксплуатации даже при возникновении пробоя на корпусе. При такой схеме пробой не станет причиной перегрузки цепи по току, а само устройство останется полностью функциональным.

При контакте человека с электроприбором под аварийным напряжением, подключенным через разделительный трансформатор, не произойдет фатального поражения током утечки. Так как он не превысит опасного для жизни уровня.

Одной из эксплуатационных особенностей разделительных трансформаторов напряжения является коэффициент преобразования равный единице у большинства используемых моделей. Таким образом, как входное, так и выходное напряжение равно одной и той же величине – 220 или 380 В.

При расчетах необходимо учитывать затраты энергии на функционирование устройства, так как КПД большинства моделей находится в диапазоне 70-85%.

Подключение

Подключить аппарат своими руками получится даже у начинающего электрика. Монтаж оборудования предполагает подключать электрические приборы без соединения с заземляющим контуром. Этого не потребуется благодаря возникновению во вторичном заземляющем контуре собственной электрической цепи. Она должна быть изолирована от сети.

Разность потенциалов будет образовываться только между клеммами прибора. Электричество будет протекать по контуру только при подключении к ним. Приведенная схема позволяет при пробое изоляции на корпусе подключенного оборудования избежать травмирования человека.

Чтобы избежать появления потенциала на корпусе различных бытовых приборов, требуется дополнительно включать в схему УЗО. Этот элемент системы позволяет предотвратить поражение электричеством, если человек одновременно коснется металлического (или заземленного) предмета, корпуса с повышенным потенциалом.

Когда правила подключения не выполняются, в аварийной ситуации через тело человека может пройти ток. Даже его величины в 0,1 А, соответствующая лампочке обыкновенного фонарика, способно приводит к остановке сердца. По этой причине требуется обязательно устанавливать УЗО.

Принцип действия устройства

Функционирование разделительного понижающего трансформатора низкого напряжения основано на эффекте гальванической развязки. Технически, это реализовано в виде автономного функционирования обеих катушек. Катушки устройства разделены физически, то есть не соприкасаются между собой.

Это обеспечивает безопасную эксплуатацию при условии, что контуры не будут закорочены в результате механического воздействия. Чтобы полностью исключить возможность контакта обмотки изолируют несколькими слоями высококачественной изоляции.

Схема разделительного трансформатора.

Проходя через первичную обмотку, ток индуцирует электроэнергию во вторичной катушке, к которой и подключаются цепи с потребляющим оборудованием. Вторичная обмотка РТ или устройства к ней присоединенные не могут иметь контакта с землей или нейтралью.

Будет интересно Необходимые условия для выполнения параллельной работы трансформаторов

Значительное повышение безопасности эксплуатации даже при возникновении пробоя на корпусе. При такой схеме пробой не станет причиной перегрузки цепи по току, а само устройство останется полностью функциональным.

При контакте человека с электроприбором под аварийным напряжением, подключенным через разделительный трансформатор, не произойдет фатального поражения током утечки. Так как он не превысит опасного для жизни уровня.

Одной из эксплуатационных особенностей разделительных трансформаторов напряжения является коэффициент преобразования равный единице у большинства используемых моделей. Таким образом, как входное, так и выходное напряжение равно одной и той же величине – 220 или 380 В.

При расчетах необходимо учитывать затраты энергии на функционирование устройства, так как КПД большинства моделей находится в диапазоне 70-85%.

Основные составляющие

В их качестве вступают:

  • магнитная система (сердечник, магнитопровод);
  • обмотки;
  • охладительная система.

Магнитная система

Состоит из элементов в комплекте, чаще всего применяются пластины из ферромагнитного материала или электротехнических сталей, которые компонуются в определенной геометрической форме. Ее выбор определяется локализацией в ней основного трансформаторного магнитного поля. Система магнитного воздействия одновременно со всеми узлами, элементами и деталями для соединения частей в общую конструкцию, носит название остова трансформатора.

Часть магнитной системы, включающая основные обмотки, называется стержнем. Другая часть магнитного комплекта, на которой нет рабочих обмоток, и она служит для соединения магнитной цепи, имеет наименование ярмо. В зависимости от того, как расположены стержни, подразделяют:

  • плоская система, где продольные стержни и ярма расположены в одной плоскости;
  • пространственная система включает разно плоскостное расположение сердечников и ярм;
  • симметричная система отличается одинаковой формой и длиной стержней, а их расположение по отношению к ярмам является стандартным для всех элементов;
  • несимметричная система, в ней все стержни различаются по форме и размеру, а их расположение не отличается симметрией и отлично от других элементов.

Обмотки

Что такое разделительный трансформатор: конструкция, принцип действияОсновным конструктивным элементом обмотки служит виток, являющийся рядом параллельных соединенных проводников (в многопроволочном варианте жилы), один раз охватывающий часть магнитного сердечника. Ток витка совместно с током других витков, проводников и частей трансформатора продуцирует магнитное трансформаторно поле, в котором наводится под действием магнитного поля сила, движущая ток.

Обмоткой называется общее число витков, образующих электрический контур для суммирования ЭДС в витках. Трехфазный трансформатор имеет в конструкции комплект обмоток из трех рабочих фаз. Проводник обычно квадратного сечения, чтобы увеличить площадь его делят на два или несколько проводящих стержня. Этот прием помогает снизить вихревые токи и облегчить работу обмотки. Квадратный проводник называется жилой. В качестве обмотки используется транспонированный кабель.

Изоляцию делают бумажной обмоткой или лаком на эмалевой основе. Две параллельные жилы могут выполняться в единой изоляции, такой комплект называется кабелем. Чтобы понять, как работает трансформатор, нужно знать разделение обмоток по типам. В зависимости от назначения обмотки бывают:

  • основные, те, что принимают преобразованную энергию или отводят переменный ток;
  • регулирующие предусмотрены для нормализации коэффициента напряжения при небольших показаниях тока в обмотках;
  • вспомогательные предназначены для электрического снабжения собственных нужд меньшей мощности, чем номинальная трансформаторная мощность, подмагничивания магнитной системы током постоянного значения.

В зависимости от варианта исполнения обмотки делят:

  • рядовые — витки делаются по всей длине в направлении оси, последующие витки наматывают плотно, без пробелов;
  • винтовые — имеют многослойное наложение, предусмотрены расстояния между витками или заходами обмотки;
  • дисковые обмотки содержат последовательно соединенные диски, при этом в центр каждого наматывается обмотка в форме спирали;
  • фольговый вид обмотки выполнен из листа алюминия или меди, разной толщины.

Бак для охлаждения

Представляет собой масляный резервуар, обеспечивает защиту активного ингредиента, служит опорой для приборов управления и вспомогательных приборов. Перед добавлением масла в баке выкачивают воздух для безопасной диэлектрической прочности изоляции. При изготовлении звуковые частоты от сердечника трансформатора и от элементов бака должны совпадать.

Конструкция предусматривает дополнительные параметры для расширения масла в условиях нагревания, иногда это дополнительный расширительный бак. Если увеличивается номинальная мощность трансформатора, то токи внутри и снаружи ведут к перегреву конструкции. Аналогично действует магнитный рассеянный поток внутри бака. Чтобы снизить отрицательное воздействие делают вставки из немагнитных материалов, окружая ими проходные сильноточные изоляторы.

Популярные статьи  Как устроены и работают высоковольтные разъединители

История создания трансформаторов

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Столетов Александр Григорьевич (профессор Московского университета) сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).

Братья Гопкинсоны разработали теорию электромагнитных цепей.

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

В 1848 году французский механик Г.Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. В 1885г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.

Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50%, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.

Как устройство защищает электроприборы

Наши дома полны электроприборов и оборудования, подключенного к электросети. Сами по себе электроприборы безопасны в использовании, что гарантируется производителями еще при их изготовлении и гарантируется соответствующими сертификатами качества.

Однако ряд неблагоприятных факторов, влияющих на устройства и сетевую проводку в каждой отдельной комнате, может ухудшить их изоляцию и создать условия для протекания тока через тело человека, что приведет к поражению электрическим током. Эти факторы включают:

  • нагревать;
  • влага в воздухе и в местах прохождения электропроводки;
  • наличие металлических изделий с нестабильным заземлением;
  • механическое повреждение изоляции.

Что такое разделительный трансформатор: конструкция, принцип действия
Компактный изолирующий трансформатор.

Когда электрический ток рассеивается, напряжение появляется не только на металлических поверхностях самих устройств, но и на трубах или других металлических предметах, окружающих пользователя.

Скорее всего, его ударит током в ванной. Так как в нем собраны все негативные факторы, влияющие на утеплитель.

Избежать поражения электрическим током можно, приняв защитные меры. Это надежное заземление корпусов электроприборов, так что в случае случайного нарушения изоляции через цепи заземления проходят опасные токи.

Они также защищены за счет использования УЗО или УЗО во входных цепях подключения нагрузки, которые отключают сеть в случае утечки на землю.

Такие защитные меры основаны на том, что земля для всех потребителей электроэнергии является частью электрической цепи. Защитное электрическое заземление просто переключает цепь, которая может возникнуть между фазой, которая случайно попадает в корпус электрического оборудования, и землей через тело человека при случайном прикосновении.

Другим методом защиты будет исключение заземления с электрической сетью, и это достигается за счет полной гальванической развязки первичной и вторичной электрических сетей. Это достигается за счет использования безопасных развязывающих трансформаторов, устройства которых будут рассмотрены ниже.

Специфика некоторых бытовых приборов, таких как стиральная машина или фен, требует их постоянного подключения к электросети в условиях повышенной влажности, что увеличивает риск поражения электрическим током от неисправного прибора или обрыва проводки.

Случайное прикосновение к токопроводящим фазам и нулевому проводу приведет к трагическим последствиям. Напряжение 220 В от электросети формируется по схеме соединения всех трех цепей с разностью потенциалов 380 В между ними нулевым проводом, который подключается (к земле, как говорят в быту каждого день) с потенциалом земли.

Что такое разделительный трансформатор: конструкция, принцип действия

Схема подключения изолирующего трансформатора и устройств к нему.

Такая схема предопределяет наличие фазного напряжения между каждым из трех проводов сетевой линии (в просторечии называют фазами) и нулем (нейтралью) – землей. Если изоляция жилы нарушена, фазное напряжение передается на корпус прибора.

Одновременный контакт пользователя с этим «перфорированным» корпусом и заземленными металлическими предметами, такими как радиаторы, смесители или водопроводные краны, вызывает прохождение электрического тока через тело человека со всеми травматическими последствиями.

Серия AVR 2

Устройства этой серии стали самыми умными среди всех систем Torus. Серия AVR2 включает в себя функционал моделей AVR с расширенными функциями Ethernet-управления и мониторинга, высокой степенью производительности и защитой. Здесь, как и в других продуктах Torus Power, работает фильтрация NBT, имеется подавление скачков SMSS, регулировка напряжения AVR.

Что такое разделительный трансформатор: конструкция, принцип действия

Под расширенными функциями управления производитель подразумевает возможность назначать отдельные группы розеток, задавать расписание работы прибора, задержку включения и т.д.

Что такое разделительный трансформатор: конструкция, принцип действия

Серии AVR и AVR2 идеально подойдут для использования в инсталляционном бизнесе.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: