Высоковольтные разрядники: виды и назначение

Содержание

Устройство разрядника

Разрядник состоит из двух основных частей: электродов и дугогасительного устройства. Устройство разрядника в зависимости от его вида бывает разным.

Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.

Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ)

Рис 2. Устройство трубчатого разрядника

Высоковольтные разрядники: виды и назначение

Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.

Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.

В вентильном разряднике для гашения дуги используется нелинейное сопротивление

На протяжении многих десятилетий на электрических сетях широко используются вентильные разрядники. Они представляют собой последовательно соединенный газовый разрядник и нелинейное сопротивление. В нашей стране обычно используются сопротивления из вилита — композиционного материала на основе карбида кремния. Сопротивление вилитового резистора тем меньше, чем больше сила тока. Когда происходит импульсное перенапряжение и срабатывает разрядник, сила тока через резистор резко возрастает и его сопротивление снижается. Но когда импульс прошел и продолжается самоподдерживающийся дуговой разряд, сила тока падает, сопротивление резистора возрастает, что приводит к уменьшению напряжения на контактах разрядника. Таким способом гасится дуговой разряд. Вентильный разрядник выдерживает до 20 срабатываний.

Разновидностью вентильного разрядника является магнитовентильный, где для гашения дуги дополнительно используется магнитное поле.

Несколько выбивается из общего ряда трубчатый разрядник, который также относится к искровым. В нем камера не является герметичной и заполнена твердым веществом — поливинилхлоридом. «Земля» выполнена в виде трубки, другой электрод выполнен в виде стержня, коаксиально расположенного в этой трубе. При искровом разряде в толще поливинилхлорида вырабатывается газ, стремящийся выйти наружу. Течение газа осуществляет гашение дуги. Трубчатые разрядники выдерживают до 10 срабатываний. Их основное преимущество — дешевизна, но в остальном их характеристики находятся не на самом высоком уровне, поэтому такие разрядники постепенно заменяют твердотельными.

Основные параметры газоразрядников

Основными параметрами газоразрядников являются статическое и динамическое напряжение срабатывания, номинальный и импульсный ток разряда, напряжение во включенном состоянии (напряжение дуги), сопротивление изоляции, собственная емкость в состоянии покоя, параметры эксплуатационного ресурса. Каждый из параметров нуждается в особом пояснении.

Как было показано выше, пробой представляет собой многоступенчатый растянутый во времени процесс. Возникновение лавины, время пролета ионов между электродами – все это требует времени. По этой причине, если входное напряжение нарастает достаточно быстро, то к моменту включения разрядника напряжение достигнет достаточно большого значения. Чем выше скорость нарастания, тем больше будет напряжение, при котором включится разрядник (рисунок 3).

Высоковольтные разрядники: виды и назначение

Рис. 3. Зависимость напряжения срабатывания от скорости нарастания входного импульса

Чтобы учесть эту особенность, в документации указывается несколько напряжений пробоя для различных скоростей нарастания входного напряжения.

Статическое напряжение срабатывания/включения (DC Breakdown), В, определяет напряжение срабатывания при медленной скорости нарастания импульса. Обычно используется скорость нарастания 100 В/с.

Динамическое напряжение срабатывания/включения (Impulse Breakdown), В, определяет напряжение срабатывания при высокой скорости нарастания импульса. Обычно используется скорость нарастания 100 В/мкс и 1 кВ/мкс.

Напряжение дуги (Arc Voltage или On State Voltage), В – напряжение горения дуги. Фактически, эта характеристика определяет, насколько сильно разрядник может ограничить входную помеху. Данный параметр приводится для конкретного минимального значения протекающего тока.

Напряжение тления (Glow Voltage), В – вспомогательная характеристика, указывающая значение напряжения тлеющего разряда. Этот параметр имеет большое значение при маломощных помехах, которые не способны сгенерировать дугу разрядника.

Ток возникновения дуги (Glow to arc transition current), А. Как было показано выше, переход от тлеющего разряда к электрической дуге требует протекания минимального тока. По сути, данный параметр оказывается вспомогательным.

Номинальный ток разряда (Nominal Discharge Current), А – номинальное значение тока разряда, который разрядник может выдерживать без разрушения.

Номинальный ток импульсного разряда (Nominal Impulse Discharge Current), А. Традиционно указывается для вполне конкретных типов импульсов (8/20 мкс, 10/350 мкс и так далее). Чем короче импульс – тем большее значение токов способен выдерживать разрядник.

Значения разрядных токов тесно связаны с параметрами эксплуатационного ресурса. К сожалению, разрядники не являются «вечными» приборами. С течением времени они выходят из строя – разрушаются электроды, ухудшаются параметры инертного газа. Чем мощнее уровень блокируемых ими помех, тем скорее GDT приходит в негодность.

Эксплуатационный ресурс (Surge Life), количество срабатываний, указывает число срабатываний при заданных параметрах импульсов и разрядных токов.

Собственная емкость в состоянии покоя (Capacitance), пФ – емкость разрядника в выключенном состоянии.

Сопротивление изоляции (Insulation Resistance), Ом, определяет токи утечки в выключенном состоянии. Значение сопротивления разрядников составляет десятки ГОм,

Емкость GDT достаточно мала (единицы пФ), а сопротивление изоляции составляет десятки ГОм. Таким образом, одно из основных достоинств газоразрядников заключается в том, что они не влияют на параметры защищаемых цепей.

Рассмотрение принципа работы и основных параметров газоразрядников позволяет сделать выводы об их плюсах и минусах.

Классы защиты ограничителей

В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.

  1. Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
  2. Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
  3. Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
  4. Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.

Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу — тем более высокая мощность. Например:

  • Класс A уменьшит уровень напряжения до 6 кВ,
  • Класс B уменьшит уровень напряжения до 2,5 кВ,
  • Класс C уменьшит уровень напряжения до 1,5 кВ,
  • Класс D уменьшит уровень напряжения до 0,8 кВ.

Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.

Популярные статьи  Рейтинг дефектов низковольтных электродвигателей

Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.

Это интересно: Потери электроэнергии в электрических сетях — причины и способы снижения

Разрядники вентильные РВО: РВО-3, РВО-6, РВО-10 кВ

Разрядники вентильные РВО предназначены для защиты от атмосферных перенапряжений изоляции электрооборудования переменного тока частотой 50 и 60 Гц. Изготавливаются для сетей с любой системой заземления нейтрали.Разрядники вентильные РВО-З У1, РВО-З Т1 соответствуют ТУ 16-521.232-77 и группе IV по ГОСТ 16357-83.

Разрядники вентильные РВО-6 Н и РВО-10 Н соответствуют ТУ 16-521.022-76 и группе IV по ГОСТ 16357-83.

Условия эксплуатации вентильных разрядников РВО

Разрядники РВО предназначены для эксплуатации в районах с умеренным и тропическим климатом при температуре окружающего воздуха:

  • от -50 до +55° С — для разрядников типов РВО-6Н и РВО-10Н;
  • от -45 до +40° С — для исполнения У1;
  • от -10 до +50° С — для исполнения Т1.

Высота установки над уровнем моря не более 1000 м.

Относительная влажность воздуха:

  • не более 98% — для разрядников типов РВО-6Н и РВО-10Н;
  • при температуре +25° С до 100% — для исполнения У1;
  • при температуре +35° С до 100% — для исполнения Т1.

Конструкция и работа вентильных разрядников РВО

Вентильный разрядник РВО состоит из искровых промежутков (1) и нелинейных резисторов (2), заключенных в герметично закрытую фарфоровую покрышку (3), которая защищает внутренние элементы разрядника от воздействия внешней среды и обеспечивает стабильность характеристик.

Рабочий резистор разрядника изготовлен из спецмассы «Вилит» и обладает нелинейной вольтамперной характеристикой.

Условное обозначение вентильных разрядников РВО

В структуре условного обозначения разрядника РВО принято:

Р — разрядник;
В — вентильный;
О — облегченный;
ХХ — номинальное напряжение;
Н — повышенной надежности;
У; Т — климатическое исполнение;
1 — категория размещения;

Общее устройство и принцип работы

Высокочастотное оборудование защищается не только молниеотводами, но и с помощью высоковольтных разрядников. Каждый из них состоит из двух основных частей – электродов и устройства для гашения дуги.

Один из электродов устанавливается на защищаемую цепь, а к другому подводится заземление. Между ними образуется пространство, известное как искровой промежуток. Когда напряжение достигает определенного значения, наступает пробой искрового промежутка между двумя электродами. За счет этого с защищаемого участка цепи снимается перенапряжение. Основным техническим требованием, предъявляемым к разряднику, является определенный уровень гарантированной электрической прочности в условиях промышленной частоты. То есть, при нормальном режиме работы сети разрядник не должен пробиваться. Высоковольтные разрядники: виды и назначениеПосле пробоя в действие вступает дугогасительное устройство. Под действием импульса повышается ионизация искрового промежутка, в результате чего пробивается фазное напряжение, действующее в нормальном режиме. Оно приводит к короткому замыканию и срабатыванию защитных устройств на этом участке. Основной задачей дугогасительного устройства как раз и является скорейшее устранение замыкания, до срабатывания средств защиты.

Высоковольтные разрядники: виды и назначение

Широкое распространение получили конструкции газовых разрядников. В их состав входит коаксиальный элемент с незначительным разрядным промежутком, и патрон с выводом на землю. В промежутке между ними выполняется установка газоразрядного элемента в форме таблетки, заключенного в стеклянную или керамическую оболочку и оборудованного электродами с каждой стороны. Внутреннее пространство оболочки заполнено газом – аргоном или неоном.

В случае перенапряжения происходит срабатывание защиты: под действием высокой температуры в разряднике наступает резкое падение сопротивления. После этого образуется дуговой разряд с напряжением около 10 вольт. Каждый такой разрядник оборудуется собственным заземлением, в противном случае он будет бесполезен.

Высоковольтные разрядники: виды и назначение

Во всех газовых разрядниках центральная жила коаксиального кабеля и первый электрод соединяются между собой. Второй электрод соединяется с заземленным корпусом разрядника. Когда через устройство проходит высокий импульс с большим напряжением, происходит пробой разрядника и центральная жила кабеля в течение короткого времени шунтируется на землю. Наблюдается существенное падение значения тока, до состояния гашения дуги, после чего наступает размыкание, то есть прибор находится в непроводящем режиме.

Газоразрядная трубка считается одноразовой деталью разрядника, требующая замены после каждого срабатывания.

Трубчатые модификации

Трубчатые и вентильные разрядники между собой схожи. На подстанциях они встречаются довольно часто. Основная особенность трубчатой модификации кроется в низкой проводной способности. Также стоит отметить, что рабочая частота лежит в пределах 40-50 Гц. Многие модификации подходят для трансформаторов серии КЕ. Системы защиты используются разных классов.

Пробивное напряжение, как правило, не превышает 500 В. Рабочая влажность разрядника составляет не более 80%. Атмосферных перегрузок они не боится, корпус защищен отлично. Насадки под устройства применяются в основном комбинированного типа. Накладки в данном случае используются довольно редко. Диски устанавливаются на небольшом расстоянии друг от друга.

Модификации с двумя конденсаторными коробками встречаются очень редко. Емкость у них в среднем составляет 500 мк. Довольно часто номинальное напряжение не превышает 450 Вт. Системы защиты КР используются редко. Резисторы дипольного типа для модификаций точно не подходят. Цена на хороший разрядник колеблется в пределах 14 – 20 тыс. руб.

Виды ОПН

Ограничители перенапряжения подразделяются в зависимости от :

  • типа изоляции (полимерная, фарфоровая);
  • конструктивного исполнения (одноколонковые, многоколонковые);
  • величины рабочего напряжения (6-10 кВ; 35кВ;110кВ;220кВ и др.);
  • места установки (ОРУ либо ЗРУ).

Фарфоровые ОПН

Представляют собой колонку варисторов,  прижатую к боковой поверхности стеклопластиковой трубы, расположенной внутри фарфоровой покрышки. Получили большое распространение среди защитных средств, но, в последнее время мало пользуются спросом в связи с появлением ОПН с полимерной покрышкой.

К плюсам ограничителей с фарфоровой изоляцией относят:

  • Относительно малое влияние температурных колебаний  на состояние аппарата;
  • Большая механическая устойчивость (это связано с тем, что основная механическая нагрузка прикладывается к изоляционному покрытию).

Недостатки ОПН в фарфоровой покрышке:

  • Недостаточное обеспечение герметичности узла крепления фланца к фарфоровой изоляционной покрышке и сохранение свойств резиновых уплотнителей в процессе длительной эксплуатации ;
  • Высокая взрывоопасность (фарфоровые осколки при взрыве разлетаются в разные стороны с огромной скоростью);
  • Масса и габариты (ограничители в полимерной покрышке в 2-3 раза легче ОПН с фарфоровой изоляцией);
  • Худшие по сравнению с ОПНп тепловые характеристики.

Полимерные ОПН

ОПН состоит из колонки варисторов, заключённых в высокопрочный полимерный корпус из высокомолекулярного каучука. Пространство между стеклопластиковой трубой и колонкой резисторов заполняется низкомолекулярным каучуком, а сама труба имеет расчётное количество отверстий для обеспечения взрывобезопасности конструкции при прохождении токов короткого замыкания. На данный момент полимерные ОПН (ОПНп) превзошли по масштабам использования и производства фарфоровые ОПН.

Преимущества ОПНп:

  • Высокая гидрофобность;
  • Значительно высокая взрывобезопасность, чем у фарфоровых ОПН;
  • Вандалоустойчивость;
  • Малый вес;
  • Лучшие, чем у ОПН в фарфоровой покрышке, электрические и разрядные характеристики;
  • Простота монтажа и транспортировки, а также стойкость к ударным и вибрационным воздействиям;
  • Способность работать в условиях естественных и промышленных загрязнений и так далее.

К недостаткам полимерных ограничителей относятся:

  • Влияние воздействия сезонных колебаний температуры окружающей среды (внутреннее пространство имеет значительно отличающийся коэффициент теплового расширения от материала покрышки, это может привести к деформации рёбер покрышки и снижению электрической прочности внешней изоляции);
  • Неправильный расчёт механической нагрузки может привести к растрескиванию варисторов ограничителя.

Одноколонковые ОПН

Конструктивно состоят из одной колонки варисторов. Они выпускаются с длиной пути утечки внешней изоляции, которая, (согласно ГОСТ 9920, соответствует второй, третьей и четвёртой степеням загрязнения.

Популярные статьи  Почему не работают розетки на кухне, причем автомат включен?

Существуют одноколонковые ОПН на все классы напряжения, при этом максимально используется объём корпуса аппарата, что также значительно снижает массу по сравнению с многоколонковыми ОПН и существенно повышает надёжность работы.

Многоколонковые ОПН

Представляют собой несколько блоков (модулей), которые образуются из определённого числа колонок, соединённых либо последовательно, либо параллельно между собой. Используются при больших классах напряжения сети, ОПН составляют из двух или трёх частей (модулей). Такая конструкция существенно повышает надежность работы ОПН при увлажнении и загрязнении поверхности аппарата.

Это интересно: Высокое напряжение в сети — что делать и куда жаловаться

Принципы работы разрядников перенапряжения

Принцип работы устройства обуславливает его тип и конструкцию. 

Разрядники состоят из мультикамерной системы (МКС), несущего стеклопластикового стержня и узла крепления разрядника к стержню изолятора и работают следующим образом. Оборудование устанавливается на металлический стержень изолятора с искровым воздушным промежутком S=30-60 мм между верхним концом разрядника и проводом. При воздействии грозового перенапряжения сначала пробивается искровой воздушный промежуток, а затем — МКС разрядника.

   

   1. Форма силиконовой резины     
   2. Промежуточные электроды     
   3. Дугогасящая камера     
   4. Дуга     
   5. Плазменная струя

Новое поколение разрядников состоит из разрядного элемента, представляющего собой мультикамерную систему и узла крепления к арматуре ВЛ. МКС такого устройства состоит из десяти щелевых дугогасящих камер, каждая из которых развёрнута относительно предыдущей на 180°.

Их работа основана на принципе гашения дуги в импульсе —- обусловленное индуктированным перенапряжением, оно протекает настолько быстро и эффективно, что электрическая прочность мультикамерной системы восстанавливается за несколько микросекунд. Это препятствует формированию искрового разряда под действием приложенного к разряднику напряжения промышленной частоты и протеканию сопровождающего тока сети.

Существуют мультикамерные разрядники экранного типа. Название произошло от их формы, напоминающей тороидальный экран.

Такие разрядники для защиты от перенапряжений применяются для линий электропередач с грозотросом и без него. Это обусловлено тем, что  обеспечивается защита от всех последствий удара молнии: при прямом ударе молнии в фазный провод, при обратных перекрытиях, при индуктированных перенапряжениях.

И, наконец, самое первое поколение устройств для молниезащиты —- это разрядники длинно-искровые. В них использован принцип скользящего разряда, дуга в этом случае горит снаружи при атмосферном давлении и гаснет за счет удлинения дуги и разбиения ее на части. Их можно эксплуатировать на ВЛ ВЛ 6, 10, 15 и 20 кВ. 

Устройства нового поколения менее подвержены изменению воздушного промежутка в процессе использования и способны погасить бо́льшие токи КЗ (до 1,2 кА). Мультикамерная система позволяет выбрать разрядник с небольшими габаритами, есть возможность приобрести такие устройства в антивандальном исполнении. У устройств с МКС есть ряд других преимуществ по сравнению с длинно-искровыми разрядниками. Они максимально просто и быстро монтируются, имеют небольшие габариты и меньшую отпускную цену.

Параметры выбора разрядников и особенности их монтажа

Для защиты от индуктированных перенапряжений ВЛ 6-10 кВ, наиболее уязвимых к грозовым воздействиям из-за низкой импульсной прочности используемых изоляторов, подходят разрядники типа РМК-20. Высота воздушных линий этого класса напряжения не превышает 10 метров, поэтому вокруг обычно оказывается достаточно объектов, чтобы отвести прямой удар молнии. Индуктированные перенапряжения спровоцированы ударами молнии в рядом стоящие с линией объекты — деревья, здания, вышки сотовой связи, заводские трубы. Эти разрядники устанавливаются по одному на опору с чередованием фаз.

Однако на возвышенностях, в полях, вдоль рек и в местах аномальной грозовой активности — например, в местах залегания железных руд, — ВЛ 6-10 кВ тоже могут быть подвержены прямым ударам молнии. В этом случае рекомендуется установка разрядников типа РМКЭ-10, которые обеспечивают защиту от всех видов грозовых воздействий. Их монтируют по одному разряднику на каждую фазу на опоре.

Лучшее доказательство работы разрядника — это бесперебойное функционирование оборудования во время грозы. На сегодняшний день это самый достоверный аргумент корректной работы устройства. О том, как работает разрядник, также сигнализируют индикаторы срабатывания, которыми оборудованы некоторые устройства. Они представляют собой стеклянную колбу, которая разбивается при срабатывании разрядника. При необходимости индикатор можно заменить на новый.

Использование разрядников зависит от области их применения. 

Принцип работы разрядника РВО-10 У1

На хрупких фарфоровых плечах разрядника РВО-10 лежит решение довольно таки нетривиальных задач. Разрядник своей работой должен обеспечить:

  • стабильность напряжения пробоя;
  • вольт-секундную характеристику, согласующуюся с вольт-секундными характеристиками защищаемой изоляции;
  • гашение дуги сопровождающего тока.

Поэтапно разберем работу разрядника РВО-10. Одна из характеристик разрядника — пробивное напряжение. В случае, когда нарастающее перенапряжение достигает величины пробивного напряжения, пробиваются искровые промежутки и ток волны перенапряжения начинает протекать на землю через нелинейные сопротивления; так называемое «остающееся напряжение» определяется падением напряжения на этих сопротивлениях, которое ниже пробивного. Им и ограничивается амплитуда воздействующего на изоляцию напряжения. После такой встряски разрядник РВО-10 вновь ведет индифферентный образ существования.

Следует заметить, что чем ниже величина сопротивления разрядника РВО-10, тем ниже напряжение на нём и тем лучше его защитное действие, но вместе с тем растет сопровождающий ток, что затрудняет его отключение. В магнитно-вентильном разряднике гашение дуги сопровождающего тока обеспечивается магнитным полем, которое накладывается на искровые промежутки («магнитным дутьём»). Улучшение характеристик современных вентильных разрядников РВО-10 достигается применением резисторов с большим коэффициентом нелинейности. Именно резистор разрядника и обладает нелинейной вольтамперной характеристикой.

Вентильный разрядник РВО-10 в течении установленного срока службы должен выдержать не менее 20 импульсов перенапряжений.

Типы/Классификация

Существует три основных типа ограничителей перенапряжения:

  1. Трубчатые разрядники
  2. Вентильные разрядники (изначально нелинейный резисторный тип с искровыми промежутками, в настоящее время – карбидокремниевый тип без искровых промежутков)
  3. ОПН — ограничители перенапряжения нелинейные (металлооксидный тип без искровых промежутков)

Выделяют четыре (4) класса разрядников:

  1. Станционный класс
  2. Промежуточный класс
  3. Распределительный класс (высокой, средней и малой нагрузки)
  4. Вспомогательный класс

Из трех указанных выше типов разрядников трубчатый тип больше не используется. Вентильные разрядники нелинейного резисторного типа с искровыми промежутками использовались в середине 1970-ых годов и к настоящему времени их применение также прекращено. Традиционный тип с карбидкремниевыми блоками/дисками используется до сих пор. Сегодня наиболее широко распространены металлооксидные ограничители перенапряжения без искровых промежутков. В этой статье мы не рассматриваем вспомогательный класс.

Что касается четырех классов разрядников, рассматриваемых в этой статье, разрядники станционного класса являются наилучшими, учитывая их стоимость, долговечность и качество защиты в целом. Он имеет самую низкую (наилучшую) степень защиты и энергию разряда по сравнению с более высокими (худшими) уровнями защиты у других классов. Как указано выше, распределительный класс имеет несколько степеней нагрузки.
Разрядники высокой производительности более долговечны и имеют более низкие защитные характеристики. Корпус такого разрядника может быть полимерным либо фарфоровым.

Мы сосредоточимся на металлооксидных ограничителях перенапряжения (ОПН) без искровых промежутков, поскольку они наиболее надежны и производительны. Пожалуйста, учитывайте, что разрядники с искровыми промежутками и без таковых служат для одних и тех же целей, поэтому процесс их выбора и применения аналогичен. Тем не менее, необходимость использовать более высокие уровни напряжения для вентильных разрядников и возможность контаминации искрового промежутка означает, что степень защиты и надежности будет несколько ниже. В случае отказа вентильных разрядников, читателю стоит рассмотреть возможность замены их металлооксидными ОПН без искровых промежутков.

Трубчатый разрядник

Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести температуру, пригодную для данного типа разрядников.

В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.

При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.

Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в разряднике имеется отверстие.

Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.

В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны. Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.

Более высокое пробивное напряжение у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.

Рис 3. Трубчатый разрядник

Вентильные разрядники.

Широкое распространение получили отечественные низковольтные вентильные разрядники РВН-0,5 (Р—разрядник, В — вентильный, Н — низковольтный, 0,5 — наибольшее допустимое напряжение в киловольтах) (рис. 8) и в последнее время разрядники ГЗа-0,66/2,5 (рис. 9) производства ПНР (0,66 — наибольшее допустимое напряжение в киловольтах, 2,5 — номинальный разрядный ток в килоамперах).
Указанные разрядники состоят из одного искрового промежутка и вентильного диска и являются приборами защиты многократного действия. Они предназначены для защиты устройств СЦБ и связи, включенных в силовые цепи напряжением 380/220 В переменного тока. Электрические характеристики этих разрядников согласованы с импульсной электрической прочностью изоляции существующих силовых трансформаторов, через которые осуществляется электроснабжение устройств СЦБ и связи. Эти разрядники надежно прерывают сопровождающий ток при максимальном рабочем напряжении силовой цепи 380/220 В. Их устанавливают и эксплуатируют по Инструкции .
Рис. 8. Вентильный разрядник РВН-0,5: 1 — «фарфоровый корпус; 2 — линейный зажни; 3 — резиновая прокладка: 4 — спиральная пружина; 5 — электрод искрового промежутка; 6 — миканитовая прокладка; 7 — фарфоровый цилиндр; 8 — вентильный диск; 9— диафрагма; 10 — зажим для заземления
Рис. 9. Вентильный разрядник ГЗа-0,66/2,5:
1— фарфоровый корпус; 2 — вентильный диск; 3 — искровой промежуток; 4 — линейный зажим; 5 —  зажим для заземления

Силовые цепи напряжением до 250 В переменного тока защищают вентиль ными разрядниками РВНШ-250 (Р — разрядник, В—вентильный, Н—низко вольтный, Ш — штепсельный, 250 — наибольшее допустимое напряжение в вольтах) (рис. 10). Их используют также для защиты линейных цепей сигнализации и связи с более низким рабочим напряжением (40 В) или постоянно находящихся под напряжением из-за электромагнитного влияния линий электропередачи или контактных сетей электрифицированных железных дорог переменного тока. Кроме того, этими разрядниками защищают ЛСС на участках дорог, электрифицированных на постоянном токе с большим удельным сопротивлением грунта, особенно в горных районах, где наблюдается гальваническое влияние тяговых токов. Основные параметры этих разрядников приведены ниже.Высоковольтные разрядники: виды и назначение
Рис. 10. Вентильный разрядник РВНШ-260:
1 — искровой промежуток; 2 — вентильный диск; 3 — крышка

РВН-0,5

ГЗа-0,66/2,5.

РВНШ-250

Наибольшее действующее допустимое напряжение, В

500

600

250

Напряжение пробоя, В, на частоте 50 Гц:
не менее

2500

1000

700

не более

3000

2200

900

Импульсное напряжение пробоя, кВ, при волне длительностью 8/20 мкс и амплитуде 1000 А не более

4500

2800

2000

Номинальный разрядный ток, А, при волне длительностью 8/20 мкс

1000

2500′

1000

Остающееся напряжение при номинальном токе, В

2500

2800

1400

Ток утечки, мкА, при выпрямленном напряжении 500 В

6

6

Масса разрядника, кг

2

0,22

0,13

Габаритные размеры, мм

126X172

55X103

Пример выбора ограничителя перенапряжений для замены существующих разрядников на ОРУ-110 кВ тяговой подстанции железной дороги

  1. На подстанции установлены разрядники типа РВС-110М.
  2. Выбор наибольшего длительно допустимого рабочего напряжения ОПН

Примем Uнро=83 кВ.

  1. Выбор класса энергоемкости ОПН

По методике (2), на объектах, где возможно частичное разземление нейтрали трансформаторов, ограничитель должен иметь энергоемкость не менее 5,0-5,6 кДж/кВ*Uнро, что соответствует 4 классу пропускной способности.

  1. Проверка номинального разрядного тока.

По линейке ОПН одного из производителей, ограничители с параметрами U нро=83 и 4-м классом пропускной способности имеют значение номинального разрядного тока, равное 20 кА. Других модификаций не производится.

  1. Проверка остающегося напряжения при нормируемом токе коммутационных перенапряжений.

, где .

Uисп нормируется ГОСТ 1516.3-96 и для сетей 110 кВ электрооборудования класса напряжения 110 кВ равняется 200 кВ. Значит,

. Тогда , или

Для ОПН одного из производителей с указанными выше параметрами максимальное значение остающегося напряжения при коммутационном импульсе равняется 210 кВ. Условие соблюдается.

  1. Проверка расстояния до защищаемого оборудования.

Следовательно, ОПН можно установить на новом месте.

  1. Выбор по условиям взрывобезопасности.

ОПН одного из производителей с выбранными параметрами имеет категорию взрывобезопасности А по ГОСТ 16357-83 (ток срабатывания противовзрывного устройства 40 кА). Этого достаточно, так как токи короткого замыкания на ОРУ-110 кВ в основном не превышают этого значения.

  1. Выбор длины пути утечки.

Предположим, что оборудование ОРУ-110 имеет степень загрязнения II (длина пути утечки 250 см/кВ). По требованию (2) выбираем ОПН с длиной пути утечки на 20% больше остального оборудования, то есть со степенью загрязнения III (длина пути утечки 315 см/кВ).

Таким образом, выбран ограничитель ОПН-П1-110/83/20/4 III УХЛ1.

Трубчатый разрядник

Вентильный разрядник РВМК-1150

Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды.

Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством — его сопротивление нелинейно — оно падает с увеличением значения силы тока.

РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

Различные ОПН

После прохождения разряда через ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояния занимает меньше 1 наносекунды (в отличие от разрядников с искровыми промежутками, у которых это время равняется нескольким микросекундам). Кроме быстроты срабатывания ОПН обладает еще рядом преимуществ.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: