Резонанс в электрической цепи

Содержание

Что такое резонансное напряжение

Если в сеть с переменным электротоком последовательно подключены дроссель и конденсаторный элемент, они способны по-своему воздействовать на генератор, который питает всю схему. Также они влияют на фазовые отношения тока и напряженности. Индуктивная катушка привносит в цепь сдвиг фаз, который заставляет электроток отставать от напряжения на четверть периода. Конденсирующий элемент, наоборот, работает так, что U отстает от тока на четверть по фазе.

Резонанс в электрической цепи

Это означает, что сопротивляемость индуктивного типа, которое работает на сдвижение фазы напряжения и тока в сети, функционирует противоположно силе емкостного сопротивления.

Резонанс в электрической цепиОсновная формула резонанса электрической цепи

К сведению! Данный процесс приводит к тому, что общий сдвиг по фазе между силой тока и напряженностью в сети всегда зависит от отношения величины индуктивной и емкостной сопротивляемостей.

Резонанс в электрической цепиРезонирование токов

Если емкостное R в сети больше индуктивного, то все соединение является емкостным. Это значит, что напряжение характеризуется разностью фаз по току. Иногда бывает и обратная ситуация, индуктивное сопротивление сети получается большим, чем емкостное. В этом случае вся сеть становится индуктивной.

Резонанс напряжений

Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить ;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:

и конденсатор в 1000 пФ

Из них собираю последовательный колебательный контур. Итак, чтобы поймать резонанс, я не буду в схему добавлять резистор. Поступлю более хитрее.

Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора  падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор — это не есть хорошо, но что не сделаешь ради науки!

Ну что же, приступим ;-). Давайте сначала посчитаем  резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:

Размах амплитуды 4 Вольта

Хотя на генераторе частоты  размах  более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.

Теперь небольшой прикол ;-)

Вот этот сигнал мы подаем на наш последовательный колебательный контур:

Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:

Смотрим напряжение на конденсаторе:

Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!

Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:

Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию с конденсатора или с катушки!

Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14,  и цепляю поочередно к ним лампочку:

Как видите — полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока — увы! Поэтому, последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения, а не мощности!

Объяснение резонанса напряжения

При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение UL = IXL , а на конденсаторе UC = IXC . А так как при резонансе у нас XL = XC , то получаем что UL = UC , ток ведь в цепи один и тот же ;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений, так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе.

Резонанс напряжений, условие возникновения — Ремонт220

Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления).

Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е.

Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:

(L – 1/WС) = 0 (1),

является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:

WL = 1/WС.
В этом выражении W – является резонансной частотой контура.
Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:
UL = U = WL * I = WLE/R

Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.

Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:

Q = WL/R

Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.

Популярные статьи  Бессвинцовые технологии пайки: припои sac и электропроводящие клеи

Применение резонанса напряжений

Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.

В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями.

Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии.

В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.

Резонанс тока в электрических цепях

Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества. Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура. Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.

В электросети простейший колебательный контур состоит из конденсатора и катушки индуктивности.

Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.

Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур, может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.

Колебания электрического тока внутри контура возникает под действием внешнего источника электроэнергии. Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура. Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.

Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения. Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника. Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.

Пример электрического резонанса в процессе настройки ТВ и радиоприемников

В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения — настройка ТВ и радиопрограмм в приемниках.

Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.

В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.

Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.

Какие последствия резонанса напряжений

Если в электрической системе с ёмкостью, индуктивностью и сопротивлением не учитывать воздействие этого явления, то работа устройств может быть нестабильной. Если этот эффект носит паразитический характер, то от него следует обязательно избавляться. Увеличение напряжения вследствие возникновения резонансного явления в цепи переменного напряжения может привести к выходу элементов из строя.

Важно! При возникновении этого явления могут быть разрушены конденсаторы из-за превышения реактивной мощности. При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться. При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться

При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться.

Возгорание электрической подстанции

На крупных производственных объектах такое явление может привести к аварии с человеческими жертвами. Если высоковольтные линии электропередач находятся слишком близко, то эффект электрического резонанса может возникать и в системах этого типа.

Шунтирующие генераторы ЛЭП

Чтобы защитить ЛЭП от негативного воздействия этого явления применяются шунтирующие генераторы, которые устанавливаются через каждые 300 – 400 км.

Типы явления

В описании резонанса Г

Галилей как раз обратил внимание на самое существенное — на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы

Механический и акустический

Резонанс в электрической цепиМеханический резонанс — это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Электрический резонанс

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптический резонанс

Резонанс в электрической цепиОптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн. Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

Орбитальные колебания

Резонанс в электрической цепиВ космической механике возникает орбитальный отклик, когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Популярные статьи  Изысканные гипсокартонные потолки с помощью точечных светильников

Атомный, частичный и молекулярный

Ядерный магнитный резонанс (ЯМР) — это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.

Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Положительные и отрицательные стороны резонанса

Увеличение колебаний в два раза и более, по сравнению с исходным допуском технического задания, способно привести к разрушению конструкции. Однако это же проявление в другой ситуации выполняет полезные функции. Плюсы и минусы резонанса удобно изучать на конкретных примерах.

Резонансный преобразователь

Для преобразования импульсного сигнала в синусоидальный можно применить представленный на рисунках инвертор. Принцип работы заключается в периодическом накоплении-возврате энергии с применением реактивных компонентов. При корректном выборе элементов колебательный контур выполняет функции фильтра. Трансформатор – это дополнительная индуктивность в цепи, поэтому основную катушку можно сделать меньше. Количеством витков обмоток устанавливают необходимое напряжение на выходе.

Определенный резон имеет создание системы отопления с помощью электроэнергии, созданной солнечными батареями. Эти «бесплатные» генераторы по мере совершенствования производственных технологий становятся дешевле. Эффективный индукционный нагреватель можно собрать самостоятельно. Некоторые схемы по КПД не уступают фабричным аналогам.

Нагреватель воды

Следующие примеры резонанса демонстрируют отрицательные стороны явления:

  • чрезмерное увеличение амплитуды колебаний элементов подвески транспортных средств;
  • вредный и неприятный звук, который формируется на резонансных частотах технологическим оборудованием;
  • возникновение помех в акустических, оптических и радио трактах.

Использование резонанса напряжений для передачи радиосигнала

Колебательный контур этого типа создают из последовательной комбинации трех базовых компонентов: резистор, конденсатор, индуктивность. Подходящим для резонанса условием является нулевое сопротивление цепи (комплексное). Для решения такой задачи следует изучить основные формулы.

Комплексное сопротивление Rк=R+j(wL-1/wC). Постоянный резистор (R) не зависит от частоты (w). Значит, придется оперировать с индукционными и емкостными элементами. Резонансный эффект получают при (wL-1/wC)=0. Для вычисления необходимых значений пользуются следующими расчетами:

  • Lп=1/w2*C;
  • Сп=1/w2*L;
  • Wп=1/√L*C.

Из приведенных данных понятно, что корректировать можно любой из параметров при одновременном сохранении двух других. В практической схемотехнике удобнее работать с частотой, поэтому рассмотрим подробнее применение такого варианта.

Резонанс в электрической цепи
Последовательный контур с графиками

На рисунках показаны условия возникновения резонанса напряжений. В точке, обозначенной w0, наблюдается равенство индуктивной и емкостной составляющих на определенной частоте. Небольшой сдвиг влево по оси обусловлен резистивным компонентом цепи.

Напряжение на конденсаторе (Uc) при частоте резонанса (W0) равно волновому сопротивлению колебательного контура (p=√L/C). Аналогичная разница потенциалов будет на клеммах катушки при частоте W0. Данная особенность объясняет особое название процесса – «резонанс напряжений». Также в электротехнических расчетах применяют следующие определения:

  • Добротность – Q=p/R;
  • Затухание – 1/Q.

Отмеченные свойства используют в радиоприемной и передающей аппаратуре. Выделение контуром определенного диапазона позволяет выполнять настройку станции на определенную частоту с определенной параметрами цепи погрешностью. Для контроля избирательности оценивают амплитуду сигнала относительно резонансной частоты. Уровень отклонения на 3 дБ в обе стороны (0,7 от максимума) называют полосой пропускания.

Резонанс в электрической цепи
Амплитудно-частотная характеристика (АЧХ) и полоса пропускания

Колебания и частота

Простейший пример колебаний — катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания

И не важно, какие это колебания – колебания электрического напряжения,  звуковые колебания, или просто механические колебания

На рисунке ниже опишем, какими могут быть колебания.

Резонанс в электрической цепиВиды колебаний

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний — это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.

Резонанс в электрической цепиРезонанс на качелях

Резонанс в реальных цепях

Для изучения описанных процессов надо собрать контур из соответствующих компонентов. Придется подготовить генератор с изменяющейся частотой выходного сигнала, осциллограф и другие измерительные инструменты. Чтобы получить достоверные результаты без лишних трудностей, пользуются специализированным программным обеспечением.

Теория и практика

В левой части рисунка размещены схема и амплитуда сигнала на выходе при подключении к выводам конденсатора параллельного контура. В правой – снимок экрана измерительной аппаратуры. Несложно убедиться в идентичности колебаний.

К сведению. С помощью ПО выполняют десятки экспериментов быстро и точно в обычных домашних условиях. Этот способ значительно упрощает создание электрических схем с оптимальными параметрами.

Резонанс напряжений или последовательное включение R, L, C элементов

В цепях переменного тока при последовательном соединении активного элемента r, емкостного С и индуктивного L может возникнуть такое явление как резонанс напряжений. Это явление можно использовать с пользой (например, в радиотехнике), но также оно может и нанести серьезный вред (в электрических установках большой мощности резонанс напряжений может вызвать серьезные последствия).

  • Принципиальная схема и векторная диаграмма при резонансе напряжений показаны ниже:
  • При последовательном включении всех трех элементов данной электрической цепи будет справедливо следующее:
  • Также нужно помнить, что резонанс возможен только при φ = 0, что при последовательном соединении равносильно вот такому соотношению х = ωL – 1/(ωC) = 0, то есть должно выполняться условие ωL = 1/(ωC) или ω2LC = 1. Резонанса напряжений можно достичь тремя способами:
  • Подобрать индуктивность катушки;
  • Подобрать емкость конденсатора;
  • Подобрать угловую частоту ω0;

Причем все эти значения частоты, емкости и индуктивности можно определить используя формулы:

Популярные статьи  Генератор на неодимовых магнитах

Резонанс в электрической цепи

Частота ω0 носит название резонансной частоты. Если в цепи не изменяется ни напряжение, ни активное сопротивление r, то при резонансе напряжения ток в этой цепи будет максимален, и равен U/r. Это значит, что ток будет полностью не зависим от реактивного сопротивления цепи.

В случае же, когда реактивные сопротивления XC = XL будут превосходить по своему значению активное сопротивление r, то на зажимах катушки и конденсатора начнет появляться напряжение, значительно превосходящее напряжение на зажимах цепи.

Условие, при котором напряжение на зажимах цепи будет меньше напряжения реактивных элементов будет иметь вид:

  1. Величина  , имеющая размерность сопротивления и для удобства расчетов обозначена нами как ρ, называется волновым сопротивлением контура.
  2. Кратность превышения напряжения на зажимах емкостного и индуктивного элемента по отношению к сети можно определить из выражения:

Величина Q определяет резонансные свойства контура и носит названия добротность контура. Также еще резонансные свойства могут характеризовать величиной 1/Q – затухание контура.

Мгновенная мощность для индуктивности и емкости будет равна pL = ULIsin2ωt и pС = -UСIsin2ωt. При резонансе напряжения, когда UL = UС, эти мощности будут равны в любой момент времени и противоположны по знаку.

А это означает, что в данной цепи будет происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, при этом обмена энергией между энергией полей и энергией источника электрической энергии (источника питания) и не происходит.

Это вызвано тем, что pL + pС = dWм/dt + dWэ/dt и Wм + Wэ = const, то есть суммарная энергия полей в цепи постоянна. При работе такой системы энергия от конденсатора будет переходить в катушку в течении четверти периода, когда ток на катушке возрастает, а напряжение на конденсатора снижается.

В течении следующей четверти периода картина противоположна – ток катушки будет снижаться, а напряжения конденсатора расти, то есть энергия от индуктивности будет переходить емкости. При этом источник электрической энергии, питающий данную цепь, будет покрывать только расход энергии, связанный с наличием в цепи активного сопротивления r.

Польза и вред резонанса

Для того чтобы сделать некий вывод о плюсах и минусах резонанса, необходимо рассмотреть, в каких случаях он может проявляться наиболее активно и заметно для человеческой деятельности.

Положительный эффект

Явление отклика широко используется в науке и технике. Например, работа многих радиотехнических схем и устройств основывается на этом явлении.

  • Двухтактный двигатель. Глушитель двухтактного двигателя имеет особую форму, рассчитанную на создание резонансного явления. Оно улучшает работу двигателя засчет снижения потребления и загрязнения. Этот резонанс частично уменьшает несгоревшие газы и увеличивает сжатие в цилиндре.
  • Музыкальные инструменты. В случае струнных и духовых инструментов звуковое производство происходит в основном при возбуждении колебательной системы (струны, колонны воздуха) до возникновения явления резонанса.
  • Радиоприемники. Каждая радиостанция излучает электромагнитную волну с четко определенной частотой. Для его захвата цепь RLC принудительно подвергается вибрации с помощью антенны, которая захватывает все электромагнитные волны, достигающие ее. Для прослушивания одной станции собственная частота RLC-схемы должна быть настроена на частоту требуемого передатчика, изменяя емкость переменного конденсатора (операция выполняется при нажатии кнопки поиска станции). Все системы радиосвязи, будь то передатчики или приемники, используют резонаторы для «фильтрации» частот сигналов, которые они обрабатывают.
  • Магнитно-резонансная томография (МРТ). В 1946 году два американца Феликс Блох и Эдвард Миллс Перселл самостоятельно обнаружили явление ядерного магнитного резонанса, также называемое ЯМР, которое принесло им Нобелевскую премию по физике.

Отрицательное воздействие

Однако не всегда явление полезно. Часто можно встретить ссылки на случаи, когда навесные мосты ломались при прохождении по ним солдат «в ногу». При этом ссылаются на проявление резонансного эффекта воздействия резонанса, и борьба с ним приобретает масштабный характер.

  • Автотранспорт. Автомобилисты часто раздражаются шумом, который появляется при определенной скорости движения транспортного средства или в результате работы двигателя. Некоторые слабо закругленные части корпуса вступают в резонанс и излучают звуковые колебания. Сам автомобиль с его системой подвески представляет собой осциллятор, оснащенный эффективными амортизаторами, которые препятствуют возникновению острого резонанса.
  • Мосты. Мост может выполнять вертикальные и поперечные колебания. Каждый из этих типов колебаний имеет свой период. Если стропы подвешены, система имеет очень разную резонансную частоту.
  • Здания. Высокие здания чувствительны к землетрясениям. Некоторые пассивные устройства позволяют защитить их: они являются осцилляторами, чья собственная частота близка к частоте самого здания. Таким образом, энергия полностью поглощается маятником, препятствующим разрушению здания.

Следующая
РазноеЧто такое активная мощность?

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Соединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: