Что такое самоиндукция?

Описание явления самоиндукции: суть явления, пояснение на примерах

Направление возникающего при самоиндукции тока определяется по правилу Ленца.

Кратко опишем процесс появления самоиндукции в проводнике. Возьмем простой замкнутый контур, состоящий из катушки, двух ламп накаливания и источника тока.

Если подключить схему к источнику, можно наблюдать, как при замыкании цепи лампа за катушкой будет загораться позже другой лампы. При размыкании цепи лампа за катушкой также потухнет позже.

После замыкания ключа по цепи начинает проходить ток, при этом сила тока будет постепенно нарастать в течение некоторого времени. В результате через витки катушки начинает проходить равномерный магнитный поток, также нарастающий со временем.

По закону электромагнитной индукции под действием меняющегося во времени магнитного поля образуется вихревое поле и, следовательно, индукционный ток. По правилу Ленца направление индукционного тока будет противоположным направлению тока источника, именно по этой причине лампа загорается не сразу после замыкания ключа.

Теперь отключим источник тока. Сила тока в цепи начнет убывать, как и магнитный поток, проходящий через обмотку катушки. Индукционный ток при этом будет сонаправлен с током источника. Лампа, находящаяся за катушкой, потухнет спустя некоторое время после размыкания ключа.

При резком размыкании цепи можно столкнуться с таким явлением, как скачок тока. Значение величины ЭДС самоиндукции в этот момент может значительно превышать ЭДС источника энергии.

Резкое возрастание тока в цепи при ее размыкании находит применение в системах зажигания двигателей внутреннего сгорания и сетевых фильтрах (с помощью явления самоиндукции сглаживаются скачки напряжения и заполняются «провалы»).

Закон Ленца

Закон Ленца говорит нам, что индуцированный ток направлен
так, чтобы препятствовать той причине, которая его вызвала. Например, подаём мы
на катушку напряжение. В катушке образуется магнитное поле которое в момент
включения пересекает витки катушки и наводит там электродвижущую силу
самоиндукции. По закону Ленца индуцированная ЭДС самоиндукции будет направлена
навстречу току который её вызвал.

Если подавать (а) и снимать (б) напряжение с катушки, то произойдёт следующее. Магнитное поле будет то появляться, то исчезать. В результате изменяющееся магнитное поле будет пересекать витки катушки и индуцировать в ней ЭДС.

Что такое самоиндукция?

Новое понятие ЭДС самоиндукции. Давайте рассмотрим её поподробнее.

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Просмотров: 1033

«Физика — 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке
при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток.
В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.
Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Индуктивность

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).
Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Популярные статьи  Что будет, если подключить колонку на 220v к 12v?

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Следующая страница «Электромагнитное поле. Электродинамический микрофон»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

Ɛi — ЭДС индукции

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

Ɛi — ЭДС индукции

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Ɛi — ЭДС индукции

I — сила индукционного тока

R — сопротивление контура

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

Ɛi — ЭДС индукции

B — магнитная индукция

v — скорость проводника [м/с]

l — длина проводника

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Индуктивность

Мы знаем, что магнитный поток, пронизывающий контур, пропорционален индукции магнитного поля: . Кроме того, опыт показывает, что величина индукции магнитного поля контура с током пропорциональна силе тока: . Стало быть, магнитный поток через поверхность контура, создаваемый магнитным полем тока в этом самом контуре, пропорционален силе тока: .

Коэффициент пропорциональности обозначается и называется индуктивностью контура:

(1)

Индуктивность зависит от геометрических свойств контура (формы и размеров), а также от магнитных свойств среды, в которую помещён контур (Улавливаете аналогию? Ёмкость конденсатора зависит от его геометрических характеристик, а также от диэлектрической проницаемости среды между обкладками конденсатора). Единицей измерения индуктивности служит генри (Гн).

Допустим, что форма контура, его размеры и магнитные свойства среды остаются постоянными (например, наш контур — это катушка, в которую не вводится сердечник); изменение магнитного потока через контур вызвано только изменением силы тока. Тогда , и закон Фарадея приобретает вид:

(2)

Благодаря знаку «минус» в (2) ЭДС индукции оказывается отрицательной при возрастании тока и положительной при убывании тока, что мы и видели выше.

Рассмотрим два опыта, демонстрирующих явление самоиндукции при замыкании и размыкании цепи.

Рис. 3. Самоиндукция при замыкании цепи

В первом опыте к батарейке подключены параллельно две лампочки, причём вторая — последовательно с катушкой достаточно большой индуктивности (рис. ).

Ключ вначале разомкнут.

При замыкании ключа лампочка 1 загорается сразу, а лампочка 2 — постепенно. Дело в том, что в катушке возникает ЭДС индукции, препятствующая возрастанию тока. Поэтому максимальное значение тока во второй лампочке устанавливается лишь спустя некоторое заметное время после вспыхивания первой лампочки.

Это время запаздывания тем больше, чем больше индуктивность катушки. Объяснение простое: ведь тогда больше будет напряжённость вихревого электрического поля, возникающего в катушке, и потому батарейке придётся совершить большую работу по преодолению вихревого поля, тормозящего заряженные частицы.

Во втором опыте к батарейке подключены параллельно катушка и лампочка (рис. ). Сопротивление катушки много меньше сопротивления лампочки.

Рис. 4. Самоиндукция при размыкании цепи

Ключ вначале замкнут. Лампочка не горит — напряжение на ней близко к нулю из-за малости сопротивления катушки. Почти весь ток, идущий в неразветвлённой цепи, проходит через катушку.

Популярные статьи  Передача электроэнергии на расстояние

При размыкании ключа лампочка ярко вспыхивает! Почему? Ток через катушку начинает резко убывать, и возникает значительная ЭДС индукции, поддерживающая убывающий ток (ведь ЭДС индукции, как видно из (2), пропорциональна скорости изменения тока).

Иными словами, при размыкании ключа в катушке появляется весьма большое вихревое электрическое поле, разгоняющее свободные заряды. Под действием этого вихревого поля через лампочку пробегает импульс тока, и мы видим яркую вспышку. При достаточно большой индуктивности катушки ЭДС индукции может стать существенно больше ЭДС батарейки, и лампочка вовсе перегорит.

Лампочку-то, может, и не жалко, но в промышленности и энергетике данный эффект является серьёзной проблемой. Так как при размыкании цепи ток начинает уменьшаться очень быстро, возникающая в цепи ЭДС индукции может значительно превышать номинальные напряжения и достигать опасно больших величин

Поэтому в агрегатах, потребляющих большой ток, предусмотрены специальные аппаратные меры предосторожности (например, масляные выключатели на электростанциях), препятствующие моментальному размыканию цепи

Интересно

Интересно, что ЭДС в проводнике увеличивается постепенно. Как оказалось это зависит от значения индуктивности цепи. Ведь даже прямой короткий металлический проводник имеет, хоть и небольшую, индуктивность. Опыты показали, что если включить в электрическую цепь катушку индуктивности, то явление самоиндукции будет проявляться еще медленнее.

Это интересно: Гистерезис в электротехнике и электронике — что это такое

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

Что такое самоиндукция?

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

Что такое самоиндукция?

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Что такое самоиндукция?

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

Что такое самоиндукция?

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Что такое самоиндукция?

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Математические формулы

Индуктивность обычно обозначается буквой «L» в честь вклада физика Генриха Ленца на эту тему.. 

Математическое моделирование физического явления включает электрические переменные, такие как магнитный поток, разность потенциалов и электрический ток исследуемой цепи..

Популярные статьи  Блок питания для шуруповерта 12в своими руками

Формула по интенсивности тока

Математически формула магнитной индуктивности определяется как отношение между магнитным потоком в элементе (цепь, электрическая катушка, катушка и т. Д.) И электрическим током, который протекает через элемент.

В этой формуле:

L: индуктивность .

Φ: магнитный поток .

I: сила тока .

N: количество витков катушки .

Магнитный поток, который упоминается в этой формуле, является потоком, создаваемым только благодаря циркуляции электрического тока..

Для того чтобы это выражение было действительным, другие электромагнитные потоки, генерируемые внешними факторами, такими как магниты или электромагнитные волны, вне схемы исследования не должны рассматриваться..

Значение индуктивности обратно пропорционально интенсивности тока. Это означает, что чем больше индуктивность, тем меньше циркуляция тока по цепи и наоборот.

С другой стороны, величина индуктивности прямо пропорциональна числу витков (или витков), составляющих катушку. Чем больше спираль имеет индуктор, тем больше значение его индуктивности.

Это свойство также варьируется в зависимости от физических свойств проволоки, образующей катушку, а также от длины этого.

Формула для индуцированного стресса

Магнитный поток, связанный с катушкой или проводником, является сложной переменной для измерения. Однако возможно получить дифференциал электрического потенциала, вызванный изменениями упомянутого потока..

Эта последняя переменная не больше, чем электрическое напряжение, которое можно измерить с помощью традиционных инструментов, таких как вольтметр или мультиметр. Таким образом, математическое выражение, которое определяет напряжение на выводах индуктора, выглядит следующим образом:

В этом выражении:

ВL: разность потенциалов в индуктивности .

L: индуктивность .

ΔI: дифференциальный ток .

Δt: разница во времени .

Если это одна катушка, то VL самоиндуцированное напряжение индуктора. Полярность этого напряжения будет зависеть от того, увеличивается ли величина тока (положительный знак) или уменьшается (отрицательный знак) при перемещении от одного полюса к другому.

Наконец, очистив индуктивность предыдущего математического выражения, мы получаем следующее:

Величину индуктивности можно получить, разделив значение самоиндуцированного напряжения между дифференциальным током по времени.

Формула по характеристикам индуктора

Материалы изготовления и геометрия индуктора играют фундаментальную роль в значении индуктивности. То есть помимо силы тока есть и другие факторы, которые на него влияют.

Формула, которая описывает значение индуктивности на основе физических свойств системы, выглядит следующим образом:

В этой формуле:

L: индуктивность .

N: число витков катушки .

μ: магнитная проницаемость материала [Wb / A · м].

S: площадь поперечного сечения ядра .

l: длина линии потока .

Величина индуктивности прямо пропорциональна квадрату числа витков, площади поперечного сечения катушки и магнитной проницаемости материала.

В свою очередь, магнитная проницаемость — это свойство материала притягивать магнитные поля и проходить через них. Каждый материал имеет различную магнитную проницаемость.

В свою очередь, индуктивность обратно пропорциональна длине катушки. Если индуктор очень длинный, значение индуктивности будет ниже.

Индуктивность длинного прямого проводника

Для длинного прямого (или квазилинейного) провода кругового сечения индуктивность выражается приближённой формулой:

L = μ 0 2 π l ( μ e l n l r + 1 4 μ i ) , {\displaystyle L={\frac {\mu _{0}}{2\pi }}l{\Big (}\mu _{e}\mathrm {ln} {\frac {l}{r}}+{\frac {1}{4}}\mu _{i}{\Big )},}

где μ 0 {\displaystyle \mu _{0}} − магнитная постоянная, μ e {\displaystyle \mu _{e}} — относительная магнитная проницаемость внешней среды (которой заполнено пространство (для вакуума μ e = 1 {\displaystyle \mu _{e}=1} ), μ i {\displaystyle \mu _{i}} — относительная магнитная проницаемость материала проводника, l {\displaystyle l} — длина провода, r << l {\displaystyle r< — радиус его сечения.

Самоиндукция

Представим себе любую электрическую цепь, параметры которой можно менять. Если мы изменим силу тока в этой цепи — например, подкрутим реостат или подключим другой источник тока — произойдет изменение магнитного поля. В результате этого изменения в цепи возникнет дополнительный индукционный ток за счет электромагнитной индукции, о которой мы говорили выше. Такое явление называется самоиндукцией, а возникающий при этом ток — током самоиндукции.

Формула магнитного потока для самоиндукции

Ф = LI

Ф — собственный магнитный поток

L — индуктивность контура

I — сила тока в контуре

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Самоиндукция — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Самоиндукция чем-то напоминает инерцию: как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет самоиндукции.

Представим цепь, состоящую из двух одинаковых ламп, параллельно подключенных к источнику тока. Если мы последовательно со второй лампой включим в эту цепь катушку, то при замыкании цепи произойдет следующее:

  • первая лампа загорится практически сразу,
  • вторая лампа загорится с заметным запаздыванием.

Что такое самоиндукция?Что такое самоиндукция?

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки так часто перегорают при отключении света.

ЭДС самоиндукции

Что такое самоиндукция?

ξis — ЭДС самоиндукции

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

ΔI/Δt — скорость изменения силы тока в контуре [А/с]

L — индуктивность

Знак минуса в формуле закона электромагнитной индукции указывает на то, что ЭДС индукции препятствует изменению магнитного потока, который вызывает ЭДС. При решении расчетных задач знак минуса не учитывается.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: