Схема параллельного подключения лампочек в цепи

Содержание

Применение обеих схем в быту

Самые популярные изделия с последовательным соединением – гирлянды.

Эту модель можно использовать и для других целей:

  • сделать дешевую подсветку в длинном коридоре;
  • сэкономить на покупке лампочек из-за частого перегорания подключением дополнительной;
  • продлить срок эксплуатации источников света (если вместо одной на 60 Вт подключить 2 по 100 Вт).

В мастерских и гаражах мощные лампы накаливания или галогенки используют для обогрева. Два элемента по 1кВт соединяют последовательно и помещают в металлическую емкость, которую устанавливают на кирпич. Температура такого обогревателя примерно 60оС. Но следует учесть минус – лампы перегорают очень скоро.

Схема параллельного подключения лампочек в цепи

Параллельная схема используется в помещениях любого назначения (в подсветке, люстрах), на улицах. Она позволяет включать отдельные источники света независимо от работы остальных, достаточно подключить несколько выключателей. Обычно не только светильники, но и все электроприборы в жилых домах соединяются параллельно и подключаются к бытовой сети на 220 В.

Для подключения светодиодных светильников часто используется смешанная модель. Создается несколько последовательных цепочек, которые между собой соединяются параллельно.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Параллельное соединение элементов цепи при переменном напряжении

Теперь рассмотрим параллельное соединение элементов цепи (сопротивления, индуктивности и ёмкости) и прохождение по ним переменного тока.

Схема параллельного подключения лампочек в цепи Параллельно соединение элементов цепи.

Подадим на вход такой цепи переменное напряжение U, тогда электрический ток в цепи I, в соответствии с первым законом Кирхгофа, будет равняться алгебраической суммы токов проходящей через элементы цепи

Схема параллельного подключения лампочек в цепи

IR, IL, IC – токи в элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,

Um­ – амплитудное значение переменного тока.

Графическое изображение напряжений и токов в параллельно соединённых элементах цепи представлено ниже

Схема параллельного подключения лампочек в цепи Напряжение и токи при параллельном соединении.

Аналогично второму закону Кирхгофа, для первого закона также существует тригонометрическая форма записи, которая соответствует получившемуся выражению. Выполним ещё одно преобразование данного выражения

где g – активная проводимость, b – реактивная проводимость.

Как видно из формулы, реактивная проводимость может быть положительной b > 0, тогда она имеет индуктивный характер, а может быть отрицательной b < 0, тогда реактивная проводимость имеет ёмкостный характер. А активная проводимость может быть только положительной.

Отдельный случай представляет собой реактивная проводимость равная нулю, то есть в этом случае проводимость индуктивности и ёмкости одинаковы

Такой случай называется резонансом токов, в этом случае общая проводимость будет определяться только активной проводимостью, а сдвиг фаз между напряжением и током в цепи будет нулевым.

Определим зависимость между напряжением и силой тока в параллельной цепи

Схема параллельного подключения лампочек в цепи

где y – полная проводимость,

ψ – разность фаз между напряжением и током в цепи.

Тогда зависимость между напряжением и током в цепи с параллельно соединёнными элементами будет иметь вид

где Um­ – амплитудное значение переменного напряжения,

Im­ – амплитудное значение переменного тока,

y – полная проводимость цепи.

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме

Перегорание отдельного элемента лучевой модели не влияет на работу остальных

Накал полный на всех лампочках

Можно подключить люстру с несколькими лампами

Немного соединительных контактов

Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодке

При щлейфной модели нарушение одного соединения мешает работе остальных

Светодиодная Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питания

При перегорании отдельного источника остальные работают

Схема не работает, если диоды подсоединяются через один резистор

Конструкция громоздкая и дорогая из-за большого количества деталей

При выходе из строя отдельного элемента на остальных увеличивается нагрузка

Видео про подключения

Про особенности параллельного и последовательного подключения рассказывает видео ниже.

Таким образом, для того чтобы правильно подключить лампочки в доме или квартире, надо сделать следующее:

  • начертить принципиальную электрическую схему системы освещения;
  • выполнить расчет проводки;
  • подобрать электрооборудование, арматуру и светильники;
  • правильно выполнить монтаж лампочек.

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.

Популярные статьи  Дифференциальная защита

Все источники света люминесцентные (экономки), лампы накаливания, светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости

А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Состав электрической цепи

Мы уже разобрали, что составными компонентами простейшей электроцепи являются источник и приемник тока, а также соединительные элементы между ними. Также в электроцепь может подключаться различное вспомогательное оборудование:

  • приборы для активации и дезактивации электроцепи;
  • устройства для измерения силы электротока и напряжения; 
  • предохранители и другие элементы защиты.

Все элементы, составляющие электроцепь, делятся на:

  • активные;
  • пассивные. 

Активные элементы вызывают электродвижущую силу в цепи, это электродвигатели, элементы питания, аккумуляторы и т. п. Все остальные компоненты, входящие в электросхему, считаются пассивными. Полярность пассивных элементов согласована с направлением электротока (от «+» к «-»), в то время как полярность активных может быть несогласованной.

Все устройства электроцепи в зависимости от вольт-амперной характеристики делятся на линейные и нелинейные.

  1. Линейными считают те элементы в цепи, сопротивление которых постоянно и не зависит от значений электротока и напряжения. ВАХ в этом случае представляет собой на графике прямую линию.
  2. Нелинейными называются те элементы, у которых сопротивление непостоянно и зависит от значений тока или напряжения. В этом случае ВАХ на графике изображена нелинейной линией.

Вольт-амперная характеристика (ВАХ)— это взаимная зависимость силы электрического тока от напряжения (касательно одного элемента электроцепи).

Условные обозначения элементов электрической цепи

На бумаге электрические цепи изображают в виде схем с использованием специальных символов, обозначающих элементы электроцепи.

Подключение через современный электронный балласт

Подключение источника света с электронным балластом

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Популярные статьи  Холодильник не отключается в чем причина

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали

Формулы последовательного и параллельного подключения

Для расчета последовательного и параллельного подключений используются отдельные формулы.

Схема параллельного подключения лампочек в цепи

Если необходимо рассчитать значение сопротивления , то считают один за другим: R = R1 + R2 + R3 (количество не ограничено, важно сложить показатели всех участков)

Обратите внимание! Если электрическая цепь соединяется смешанным типом, значения просчитываются отдельно для каждого участка — параллельного и последовательного. Затем результаты складывают и получают итоговое значение

Чтобы рассчитать падение напряжения для разных подключений, используют следующие формулы (последовательное и параллельное соответственно):

  • U = I * Rобщ.;
  • U = U1 = U2 и так далее (значение напряжения равно на всех участках).

В данной формуле U — итоговое значение напряжения, Rобщ — общее сопротивление элементов цепи, I — уровень тока, подаваемого на участок электрической цепи.

Расчет силы тока вычисляется следующим образом (соответствие прежнее — друг за другом и параллельное):

  • I = I1 = I2 и так далее (уровень одинаков независимо от подключенных элементов и участка);
  • I = I1 + I2 + I3 (складываются значения всех соединений).

Из приведенных формул следует, что при подключении друг за другом создается одинаковый уровень напряжения, при параллельном — силы тока.

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме

Перегорание отдельного элемента лучевой модели не влияет на работу остальных

Накал полный на всех лампочках

Можно подключить люстру с несколькими лампами

Немного соединительных контактов

Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодке

При щлейфной модели нарушение одного соединения мешает работе остальных

Светодиодная
Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питания

При перегорании отдельного источника остальные работают

Схема не работает, если диоды подсоединяются через один резистор

Конструкция громоздкая и дорогая из-за большого количества деталей

При выходе из строя отдельного элемента на остальных увеличивается нагрузка

Разница между последовательным и параллельным соединением, преимущества и недостатки

Принципиальные отличия между последовательным и параллельным соединение проводников по ключевым электротехническим параметрам приведены в таблице:

Параметр/тип соединения Последовательное Параллельное
Электросопротивление Равняется сумме электросопротивлений всех электропотребителей. Меньше значения электросопротивления каждого отдельного из подключенных электроприборов.
Напряжение Равняется совокупному вольтажу всех электропотребителей. Одинаковая величина на всех участках электроцепи.
Сила тока Одинаковая величина на всех участках электроцепи. Равняется совокупному значению токов на каждом из приборов.

За счет своих особенностей каждый из типов сборки цепей имеет свои преимущества и недостатки. Это позволяет использовать данные способы для решения разных электротехнических задач.

Плюсы и минусы последовательного соединения

Основными преимуществам электроцепей из последовательно соединенных приборов являются их следующие особенности:

  • простота проектирования и построения схемы;
  • низкая стоимость комплектации;
  • возможность подключения приборов, рассчитанных на меньшее рабочее напряжение, по сравнению с номинальным напряжением сети;
  • выполнение функции регулирования тока – обеспечивает равномерные нагрузки на все приборы.

Однако у этого способа компоновки электросхемы есть и серьезные недостатки. Главным из них является ненадежность цепи из последовательно соединенных проводников. При выходе из строя любого из подключенных приборов, происходит отключение всей цепи.

Кроме того, минусом является снижение напряжения при увеличении количества подключенных потребителей. Примером может служить последовательное соединение нескольких ламп. Чем больше осветительных приборов подключено таким способом к источнику электропитания, тем менее яркий свет они будут давать.

Плюсы и минусы параллельного соединения

При использовании параллельного соединения проводников обеспечиваются такой набор преимуществ:

  • стабильность напряжения на электроприборах, вне зависимости от их числа;
  • возможность включения или отключения отдельных участков в нужный момент без нарушения работы всей электроцепи;
  • надежность – при выходе одного или нескольких компонентов из строя сама электроцепь продолжает сохранять работоспособность.

Недостатком является более сложный расчет и сложная схема, использование которой повышает стоимость комплектации электросети.

Не допускается подключение приборов, с номинальным рабочим вольтажом меньше сетевого. Параллельное соединение аккумуляторов с разным значением вольтажа связано с перетеканием тока в АКБ с меньшей его величиной, что может вызывать ускоренный износ батареи.

Лучевое подключение

Схема параллельного подключения лампочек в цепи

Лучевое соединение более надежно, но устанавливать проводку этим способом сложнее. Вам потребуется больше кабеля. Соединение должно получиться более качественным, чтобы все провода держались там, где их закрепили. Удобный способ монтажа — с использованием клеммной колодки, когда с одной стороны проводите фазу и разводите на контакты. С другого конца подводите отрезки кабеля, отходящие к светильникам.

Похожий способ — использовать клеммники Ваго. Он прост и быстр в исполнении. Вам нужно зачистить провода и вставить их в гнезда.

Вы можете воспользоваться еще одним вариантом — скрутите провода, обожмите плоскогубцами и сварите. Соединение получается неразъемным, однако достаточно прочным.

Если вы разбираетесь в электрике, то справитесь с монтажом светильников самостоятельно. Если сомневаетесь, обратитесь к электрикам, которые рассчитают количество электроприборов на вашу площадь, правильно разметят места установки и выполнят монтаж.

Смешанные схемы

Бывают ситуации, когда на одной схеме можно увидеть одновременно последовательное и параллельное подключение элементов. В таком случае говорят о смешанном соединении. Расчет подобных схем проводится отдельно для каждой из группы проводников.

Так, чтобы определить общее сопротивление, необходимо сложить сопротивление элементов, подключенных параллельно, и сопротивление элементов с последовательным подключением. При этом последовательное подключение является доминантным. То есть его рассчитывают в первую очередь. И только после этого определяют сопротивление элементов с параллельным подключением.

Что такое двойной выключатель и где применяется

Двойной выключатель используется для управления двух электрических приборов одним устройством либо для включения и выключения двух групп на одном бытовом приборе.

Зачастую такие выключатели используются для включения разных секций многоламповых люстр – клавиши выключателя отвечают за разные группы лампочек в люстре, при нажатии обеих кнопок загораются все лампочки в люстре.

Перед тем как устанавливать выключатель необходимо провести этап подготовительных работ:

  • приобрести выключатель, который подходит вашим требованиям;
  • изучить особенности расположения контактов;
  • подготовить место для проведения работ и необходимые инструменты;
  • тщательно придерживаться правил безопасности.

Устройство двухклавишного выключателя

Схема параллельного подключения лампочек в цепи

Все двухкнопочные выключатели трехконтактные – имеют один ввод, а выводов два. Провод с фазой необходимо подключить к общему вводу, а выводы включают и выключают разные секции в бытовых приборах.

При монтаже выключатель располагают так, что контакт ввода находится снизу, а выводы, предназначенные для подключения осветительного прибора – сверху. Так как такой выключатель трехконтактный, то и зажимов под провода предусмотрено также три.

Почему фаза должна разрываться выключателем?

Какой бы не была конструкция электроприбора, фаза должна разрываться выключателем. Это необходимо для обесточивания электроприборов.

Таким образом, при ремонтном обслуживании прибора (например, при замене перегоревшей лампочки) обеспечивается безопасность при включенном автомате.

Популярные статьи  Удельное сопротивление меди

Разновидности бытовых выключателей

Применяемых в современном домашнем интерьере выключателей разнообразное множество. Подробно с классификацией устройств управления светом знакомит одна из популярных статей, размещенных на нашем сайте.

При выборе домашнего выключателя уделяйте больше внимания не его дизайну, а функциональности, прочности креплений и надежности электрических контактов

По различию их функциональных возможностей выделяются следующие наиболее распространенные разновидности:

  1. Выключатель одноклавишный – его миссия проста: «вкл/выкл».
  2. Выключатель двухклавишный позволяет руководить одномоментно двумя независимыми цепями освещения.
  3. Выключатель трехклавишный, соответственно, координирует работу в трех направлениях.
  4. Выключатель-регулятор (диммер) не только включает-выключает, но и нажатием клавиши или поворотом круглой ручки, ее заменяющей, регулирует плавно яркость света ламп.
  5. Выключатель с регулятором – двух-, трехклавишный выключатель, который ступенчато, переключением клавиш, управляет накалом всех лампочек одновременно.
  6. Одинарный проходной выключатель. Единственной клавишей перекидывает фазу меж двух проводов. Если на один напряжение подается, то от другого отключается, и наоборот.
  7. Перекрестный одинарный выключатель. Изменением положения клавиши синхронно меняет прямое подключение двух линий на перекрестное.
  8. Сенсорный выключатель. Не имеет рычажков – он начинает и прекращает подачу электричества прикосновением пальцев к его поверхности.

Выключатель с датчиком движения зажигает светильник автоматически, реагируя на прохождение мимо человека.

Применение в быту

Наиболее распространённая схема параллельного подключения представлена в обычных ёлочных гирляндах.

Применяется эта схема и в других ситуациях. Например, можно:

  • смонтировать бюджетную подсветку в коридоре большой длины;
  • не тратиться на покупку новой лампы, так как они часто перегорают, а подключить другую;
  • увеличить срок использования лампочек — меняем две лампы на шестьдесят ватт на одну в сто ватт.

Зачастую галогенные и обычные лампы накаливания большой мощности используют в различных мастерских и гаражах для того, чтобы отапливать помещение. Две лампы в один киловатт мощностью подключают последовательно и размещают в короб из металла, который ставят на кирпичи. Такой обогреватель способен прогреться до шестидесяти градусов тепла. Правда, сами лампы приходится часто менять по причине того, что они быстро перегорают.

Схема параллельного подключения распространена достаточно широко. Применить её можно в совершенно любом помещении. Это может быть подсветка, лампы в люстре, уличное освещение. Её прелесть в том, что каждым источником света можно управлять отдельно — остальные этому совершенно не мешают.

Единственное, что нужно — включить в схему необходимое количество выключателей. В жилых домах по такой схеме работают не только осветительные приборы, но и все остальные, которые питаются электричеством.

Последовательное соединение

Схема параллельного подключения лампочек в цепи

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая. Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине. Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Схема параллельного подключения лампочек в цепиПреимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.

Схема параллельного подключения лампочек в цепиСхема параллельного подключения лампочек в цепи

Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Схема параллельного подключения

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

1 of 2

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.

Напряжение на них подается одновременно и всегда составляет номинальные 220В.

Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: