Принцип работы и устройство синхронного генератора переменного тока

Синхронная конструкция

Синхронным называют генератор (альтернатор), у которого частота вращения ротора совпадает с показаниями движения поля магнитного. При автономной работе оборудование тока переменного способно выдержать любую нагрузку. Техника отлично функционирует в условиях без централизованных магистралей. 

Принцип работы

Синхронный альтернатор работает по принципу электромагнитной индукции. При холостом движении катушка статора разомкнута, а энергия формируется в роторной обмотке. Подвижные части вращаются от мотора. Во время процесса внутри образуется постоянная частота, а магнитное поле переносится через детали и создают электродвижущую силу.

Для образования полей внутри конструкции нужна обмотка. Элемент позволяет надежно изолировать друг от друга металлические пластины. Если в синхронном альтернаторе якорь привести в движение вращением, то поток энергии переходит через статорные катушки.

Принцип работы и устройство синхронного генератора переменного тока
Принцип работы оборудованияИсточник en.ppt-online.org

Щеточные конструкции работают в режиме двигателя или для генерации электричества. В моделях, функционирующих при высоких нагрузках, дополнительно используют системы охлаждения. В вал устанавливают «крылья», которые с двух сторон обдувают ротор и снижают температуру подвижного элемента. Чем сильнее поток кислорода, тем лучше проходит процедура.  

Особенности конструкции

Синхронный альтернатор по строению является типичным представителем генераторов. В пазах статора щеточной машины расположили одно-, двух- или трехфазную обмотку. От бесщеточного вида модель отличается ротором, который по функциям является электрическим магнитом. В конструкции присутствуют полюсы (от 2 и более).

У быстроходных генераторов количество полюсных пар равно 1. Чтобы получить ток, синхронный альтернатор надо вращать с определенной частотой. Производители создают конструкции, внутри которых присутствуют полупроводниковые трехфазные элементы. Для образования энергии применяют метод выпрямления токов переменных.

Принцип работы и устройство синхронного генератора переменного тока
Технические особенности видаИсточник smolgelios.ru

Система возбуждения генераторов представляет собой оборудование, созданное для производства тока. Регуляторы используют для управления электричеством. По типу действия выделяют 2 группы:

  • Пропорционального. При отклонении одного параметра равномерно трансформируют ток возбуждения.
  • Сильного. Изменения происходят при расхождении нескольких показателей.

Структуры возбуждения в синхронном альтернаторе обеспечивают безопасное функционирование и торможение оборудования на холостом ходу. Техника работает по заданной программе с учетом нагрузок. При отклонении параметров устройство подстраивается под изменения (напряжения, скорости).

Принцип работы и устройство синхронного генератора переменного тока
Генератор постоянного токаИсточник arsvest.ru

Виды оборудования

По техническим особенностям синхронные альтернаторы делят на 4 группы. В турбогенераторах энергия возникает при движении специальных элементов. Скорость у моделей часто достигает 6000 об/мин. Гидроконструкции за счет отсутствия полюсов работают на малых оборотах.

Принцип работы и устройство синхронного генератора переменного тока
Виды щеточных альтернаторов Источник en.ppt-online.org

Мощный синхронный компенсатор применяют для стабилизации напряжения. Аппарат подходит для улучшения качества получаемой энергии. Двухполюсное ударное оборудование воздействует недолго, используют в графиках коротких замыканий. 

Плюсы и минусы

Синхронные генераторы (альтернаторы) обеспечивают на выходе равномерный ток, легко переносят максимальные нагрузки и небольшие колебания. Агрегаты подойдут для выработки электричества для бытовой, компьютерной техники и точного оборудования. Сильные стороны:

  • качественная энергия;
  • стабильное напряжение;
  • практичность в эксплуатации;
  • надежность.

К недостаткам синхронных генераторов (альтернатов) относят высокую цену, создание радиопомех и слабую защиту от пыли. Для снижения жара вращающихся щеток используют вентиляторы. Система охлаждения, как пылесос, втягивает мелкие частицы, которые засоряют конструкцию и станут причиной поломок. Чтобы минимизировать проблему, профессионалы советуют регулярно осматривать и вовремя менять детали. Угольные модели прослужат до 2 лет, медно-графитовые – 4 месяца.

Принцип работы и устройство синхронного генератора переменного тока
Где используют оборудованиеИсточник gidroturb.ru

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Популярные статьи  Датчик уровня масла: устройство, принцип работы, виды, схемы

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

ЧИТАТЬ ДАЛЕЕ: Термостойкая эмаль раствор для работы по металлу кремнийорганические материалы черная аэрозольная эмаль ко 8104 8101 белое антикоррозионное средство

Принцип работы и устройство синхронного генератора переменного тока

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Разновидности синхронных генераторов переменного тока

Базовая классификация альтернаторов включает следующие типы устройств:

  1. Высокочастотные генераторы рассчитаны на преобразование механической энергии в электричество высокой частоты. Приспособление работает за счет изменения магнитного потока с помощью воздействия вращающегося ротора на статичный статор. Высокая частотность достигается увеличением количества полюсов и разгоном вращения статора. Применяется в качестве источника питания электричеством для радиотелеграфных станций на расстояние до 3 километров. Для меньших промежутков они не подходят, поскольку требуется увеличение частотности. Устройства подразделяются на генераторы, производящие энергию непосредственно в машине, и агрегаты, в которых ток увеличивается за счет статических умножителей.
  2. Гидротурбинный генератор, как становится понятно из названия, функционирует за счет движения гидравлической турбины. Ротор в таких устройствах располагается на одном валу с турбинным колесом. Максимальная мощность подобных агрегатов достигает 100 000 кВт, что является внушительным показателем для электростанций, в особенности автономных. По размеру они ощутимо больше аналогичных аппаратов. Диаметр одного ротора может достигать пятнадцати метров. На мощность турбины значительное влияние оказывает скорость, с которой она вращается, маховый момент, характерный для ротора, и протяженность ЛЭП (линии электропередачи). Обмотка размещается непосредственно на статоре, охватывающем явный полюсный ротор, который закреплен на валу.
  3. Паротурбинный генератор, работающий с помощью паровой турбины. Наибольшим распространением пользуются двухполюсные и четырехполюсные устройства. Ротор имеет форму внушительного по размеру цилиндра с пазами прямоугольного типа. В специальных пазах на внутренней стороне статора размещается обмотка переменного тока. В машинах, работающих медленно, устанавливается ротор в форме колеса или звезды. Если система замкнутая, то охладительные элементы располагаются непосредственно под генератором. В сравнении с предыдущим типом генераторов паротурбинные обладают значительно меньшими размерами.

Самое широкое распространение получили синхронные трёхфазные генераторы, мощности которых варьировались от минимальных значений до нескольких мегаватт. Работа классических альтернаторов была основана на том, что на роторе располагались кольца и щетки, которые находились в непосредственном контакте со статором. В большинстве случаев данный механизм был небезопасен, щётки при этом быстро изнашивались, а коллектор якоря требовал непрерывного поддержания в рабочем состоянии. Поэтому были разработаны бесщёточные синхронные генераторы, которые исключили все эти недостатки.

Работа синхронного бесщёточного трёхфазного генератора основана на применении системы независимого возбуждения и автоматических регуляторов напряжения (AVR). AVR помогает не допускать отклонений и скачков, поддерживая выходное напряжение генератора на постоянном уровне. Если вдруг происходит значительный скачок напряжения, AVR примет всю нагрузку на себя и в первую очередь выйдет из строя, защитив тем самым остальные системы альтернатора. AVR поставляются отдельно в качестве запасной части и заменить его не сложнее, чем поменять батарейки в любом устройстве.

Генераторы могут быть одноопорные с одним подшипником и двухопорные.

Популярные статьи  Источники света для детской комнаты

Если генератор вышел из строя, а двигатель находится в хорошем состоянии, то можно заказать генератор отдельно. Для заказа нужно обязательно знать наименование двигателя и присоединительные размеры генератора. Основная градация здесь по стране производства двигателя – отечественный он или импортный, – поскольку для отечественных двигателей (ЯМЗ, ТМЗ или ММЗ) в большинстве разработаны свои типы для присоединения и стыковки генератора с двигателем (напрямую, через муфту или при помощи стыковочных колец). Импортные же двигатели стыкуются с альтернаторами по единой системе SAE.

6.4. РЕАКТИВНЫЙ СИНХРОННЫЙ ДВИГАТЕЛЬ

В лабораторной практике, в быту и в маломощных механизмах применяют так называемые реактивные синхронные двигатели

. От обычных классических машин они отличаются лишь конструкцией ротора. Ротор здесь не является магнитом или электромагнитом, хотя по форме напоминает собой полюсную систему. Принцип действия реактивного синхронного двигателя отличен от рассмотренного выше. Здесь работа двигателя основана, на свободной ориентации ротора таким образом, чтобы обеспечить магнитному потоку статора лучшую магнитную проводимость (рис. 6.4.1).

Действительно, если в какой-то момент времени максимальный магнитный поток будет в фазе А — X, то ротор займет положение вдоль потока ФА. Через 1/3 периода максимальным будет поток в фазе В — У. Тогда ротор развернется вдоль потока ФВ. Еще через 1/3 периода произойдет ориентация ротора вдоль потока. ФС. Так непрерывно и синхронно ротор будет вращаться с вращающимся магнитным полем статора. В школьной практике иногда, при отсутствии специальных синхронных двигателей, возникает необходимость в синхронной передаче. Эту проблему можно решить с помощью обычного асинхронного двигателя, если придать ротору следующую геометрическую форму (рис. 6.4.2).

АСИНХРОННЫЙ ГЕНЕРАТОР ПЕРЕМЕННОГО ТОКА

Особенности конструкции и виды.

Принципиальное отличие асинхронных генераторов (АГ) от их синхронных аналогов заключается в отсутствии жесткой связи частоты вращения ротора с тем же параметром для ЭДС, наводимой в статоре.

Из-за особенностей конструкции индуктора при взаимодействии вращающегося и неподвижного э/м полей скорость вращения вала чуть меньше частоты наведенной в катушках статора ЭДС.

Разность между этими показателями называют «скольжением». Указанный эффект возникает из-за того, что индуктор изготавливается в виде короткозамкнутой решетки.

Ротор «беличья клетка»

Известные модели асинхронных генераторов различаются по следующим рабочим параметрам:

  • способ возбуждения;
  • методы стабилизации и управления;
  • диапазон скольжений.

Кроме того, такие агрегаты могут отличаться количеством генерируемых фаз.

Управление режимами.

Для возбуждения рабочих обмоток асинхронных генераторов потребуются внешние воздействия, реализуемые различными по своей эффективности способами. При этом возможны два режима управления запуском: мягкий и жесткий.

Не вдаваясь в подробности процесса управления и обходясь без теоретических выкладок, отметим следующее:

  • мягкий режим характеризуется быстрым и безопасным выходом на стационарный рабочий ход спустя какое-то время после запуска асинхронной машины;
  • жесткий режим связан с повышенным расходом энергии и дополнительными рисками для системы;
  • для реализации последнего чаще всего применяются способы внешнего воздействия (подкачки).

Мягкий запуск с возбуждением обмоток требует больших дополнительных затрат, связанных с использованием дорогостоящих электронных систем.

В простейшем случае обходятся жестким режимом, реализуемым с помощью комплекта конденсаторов или специального компенсатора. В обоих случаях дополнительные элементы подкачки энергии подключаются к статорной обмотке (якорю).

Преимущества и особенности применения.

К числу бесспорных достоинств асинхронных электрогенераторов относят следующие особенности:

  • устойчивость к перегрузкам и кз;
  • простота конструкции и легкость обслуживания;
  • малые линейные искажения формируемого сигнала;
  • низкий уровень тепловыделения.

Показатель нелинейных искажений синусоиды у устройств этого класса не превышает 2% (против 15 процентов у синхронных машин); Благодаря этому использование таких электрогенераторов гарантирует устойчивость функционирования подключенного оборудования.

Кроме того, их применение обусловлено способностью вырабатывать активную мощность лишь при условии наличия в нагрузочной цепи реактивной составляющей.

Соблюдение этого требования возможно только в системах, включающих в свой состав индуктивные или емкостные нагрузки. В случае необходимости эти агрегаты могут использоваться в качестве асинхронных двигателей.

С учетом всего сказанногоасинхронные генераторы применяются:

  • в функции генератора пиковых нагрузок – в тепло- и гидроэлектростанциях, а также в ветряных установках небольшой мощности;
  • в двигательном режиме они нередко применяются для холодной обкатки двигателей внутреннего сгорания;
  • при горячей обкатке асинхронная машина переводится в режим генератора, нагружая двигатель и отдавая энергию в бортовую сеть.

В авиации двигательный режим востребован при запуске турбин, а в качестве генератора он обеспечивает бортовые сети переменным и постоянным током.

Популярные статьи  Как поменять электросчетчик в квартире?

Для получения постоянной составляющей в бортовой сети устанавливаются мощные выпрямительные устройства.

В системах следящего привода, в автоматических системах управления, а также в ряде цифровых устройств применяются асинхронные тахогенераторы, работающие с полым или короткозамкнутым ротором.

  *  *  *

2014-2022 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Генератор переменного тока. Устройство и принцип действия

Видео: Принцип работы генератора переменного тока. Как работает генератор простыми словами? Что такое переменный ток?

Генератор переменного тока — это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока путем вращения проволочной катушки в магнитном поле. Большинство генераторов переменного тока используют вращающееся магнитное поле.

В последнее время широкое распространение получили генераторы переменного тока, выгодно отличающиеся от генераторов постоянного тока своими габаритными размерами и способностью вырабатывать ток заряда при меньшей частоте вращения коленчатого вала двигателя. Они имеют повышенную надежность.

Генераторы переменного тока используют на гусеничных и колесных машинах (например, на КамАЗ-4310 и КЗКТ-7428). По своей конструкции генераторы переменного тока отличаются от коллекторных генераторов постоянного тока. У них почти вдвое меньше масса и втрое — расход меди. Благодаря более раннему началу отдачи зарядного тока (с момента приведения во вращение вала двигателя на режиме холостого хода) такие генераторы имеют существенно лучшие зарядные свойства по сравнению с генераторами постоянного тока.

Генератор переменного тока представляет собой трехфазную синхронную электромашину с электромагнитным возбуждением и выпрямителем. Генератор работает совместно с регулятором напряжения, обеспечивающим поддержание в электросети машины (с определенным допуском) требуемого постоянного напряжения.

Рис. Схема генератора переменного тока: 1 — ротор; 2 — статор; 3, 9 — шарикоподшипники; 4 — шкив привода; 5 — вентилятор; 6, 10 — крышки; 7 — выпрямитель; 8 — контактные кольца; 11 — щеткодержатель; 12 — обмотка возбуждения; 13 — винты крепления фазовых обмоток статора к выпрямителю; 14 — винт «массы»

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: