Способы напыления покрытий

Сущность

Расплавление высокотемпературным источником энергии распыляемого материала с образованием двухфазного газопорошкового потока, с формированием покрытия, как правило, толщиной 0,1-1 мм и нагреве напыляемой детали не более 150°С.

В зависимости от используемого источника энергии существуют следующие способы напыления:

  • газопламенное, с использованием тепла сгорания горючих газов (ацетилена, пропан-бутана и др.) в смеси с кислородом или сжатым воздухом;
  • электродуговое, при плавлении двух проволок электрической дугой и распылении сжатым воздухом расплавленного металла;
  • детонационное, в котором перенос и нагрев порошкового материала осуществляется ударной волной, образующейся в результате взрыва горючей смеси и выделении при этом теплоты;
  • плазменное, где нагрев и разгон наносимого порошкового материала осуществляется плазменной струёй;
  • высокоскоростное (HVOF, HVAF), когда порошковый материал подается в камеру сгорания смеси, содержащей кислород и горючие газы (водород, пропан, метан) или горючее (керосин), с последующим его прохождением через расширяющееся сопло Лаваля;
  • холодное газодинамическое — нанесение покрытий из пластичных порошковых материалов (в смеси с оксидом алюминия) при их разгоне сверхзвуковыми газовыми струями, нагретыми до температуры 300-1000°С.

Применяемое оборудование

Современные производители предлагают широкий выбор установок для газопламенного напыления. В качестве примера рассмотрим устройство оборудования отечественного производства типа ППМ-10 (на фото).

Способы напыления покрытий

Ее назначение – нанесение защитных покрытий с различными функциональными свойствами в ручном или механизированном режиме. В качестве присадочного вещества используется материал порошкового типа.

Основными узлами установки являются:

  1. Распылительный аппарат, который имеет внешнее сходство с пистолетом.
  2. Пульт управления газами.
  3. Камера для выполнения обработки.
  4. Подставки.

Для выполнения газопламенного напыления используются следующие расходные материалы:

  • ацетилен;
  • кислород;
  • воздух, очищенный от влаги и механических включений.

Газопламенное напыление – востребованная технология, основными достоинствами которой являются высокая производительность и низкая себестоимость работ. А вы сталкивались с этим методом обработки? Как вы считаете, в какой отрасли промышленности газопламенное напыление пользуется наибольшим спросом? Напишите ваше мнение в блоке комментариев.

Область применения порошковой покраски металлических изделий

Способы напыления покрытий

Металлические изделия стали покрывать порошкообразными красками еще в 60-х годах прошлого века. Предпосылок для такого нововведения было немало, и экономическая выгода, и забота о сохранении экосистемы, и эстетичность самого изделия. Все началось с применения системы анодирования и электростатического покрытия. Эти нововведения оказались довольно практичными: срок использования изделий увеличился благодаря их повышенной устойчивости при контакте с внешней средой.

Порошковая покраска металлических изделий относится к экологически чистым технологиям обработки, так как является практически безотходной, а сами изделия становятся более качественными. Причем, это можно сказать не только о декоративном покрытии, но и о декоративно-полимерном.

Порошок наносится на обрабатываемую поверхность по определенной методике. Первый тонкий слой порошка проходит термообработку (плавится при температуре не менее 160°). После этого изделие покрывают ровным сплошным слоем красителя

Принимая во внимание, что данный метод предусматривает термообработку при высокой температуре, он применим только для изделий из металла или стекла. За последнее десятилетие порошковая покраска металлических изделий расширила сферу своего применения, охватив различные производственные отрасли, использующие лакокрасочные материалы для обработки деталей

Из чего же состоит порошковая краска? Эта дисперсная смесь включает в себя множество компонентов в виде набора мельчайших частиц и воздуха. Кроме этого, в краситель обязательно добавляются дополнительные примеси и цветовой пигмент.

Способы напыления покрытий

Стоит обратить ваше внимание на то, из чего формируется стоимость порошковой покраски, так как ценовой диапазон достаточно широк. Итак, в окончательной стоимости учитываются особенности поверхности изделия, способ окрашивания и работа специалиста

Порошковая покраска металлических изделий осуществляется сухой смесью, состоящей из множества разнообразных добавок, среди которых смолы, отвердители и пигменты, — все компоненты имеют вид мельчайших крупиц (10 – 100 микрометров). Отличительная черта красителя – отсутствие растворителя, как в самом составе, так и в процессе работы.

Спектр применения и целевое назначение методики ограничены: металлические изделия, требующие антикоррозийной защиты или для повышения электрической изоляции.

Способы напыления покрытий

Порошковая покраска металлических изделий способна решить три задачи: экономическую, экологическую и практическую (повышается безопасность использования таких деталей). И это помимо того, что применение этого метода делает выше физические и химические свойства покрытия. Данные преимущества были по достоинству оценены в следующих производственных отраслях: в автомобиле- и приборостроении, в сельском хозяйстве, в строительстве и в некоторых других, например:

  • порошковая покраска металлических изделий бытовой техники (хозяйственный инвентарь, холодильники, стиральные машинки и другое);
  • покрытие алюминия, используемого для производства окон, дверей, медицинской техники и торгового оборудования;
  • изделия, используемые в строительстве: профили, фасады, металлопрокат, кровельные материалы и другое;
  • автомобили и другие средства передвижения (велосипеды и мотоциклы), включая покрытие их деталей и запасных частей:
  • порошковая покраска изделий из других материалов: стекла, керамики, камня, МДФ и гипса;
  • производство спортивного инвентаря.
Популярные статьи  Электрическое напряжение

Кроме этого, данную методику довольно часто используют солидные автомобильные концерны.

Способы напыления покрытий

Что собой представляет практическое использование порошкового покрытия? Рассмотрим это на примере производства оконных профилей из алюминия. На заводе по производству таких изделий обязательно есть специальная линия порошковой покраски. Благодаря такой обработке изделие способно сохранить свои внешние данные и качественные характеристики на протяжении, как минимум, 15-ти лет.

Виды металлизации

Металлизация поверхностей производится различными методами. Выбор метода зависит от технологии нанесения и используемого при этом оборудования.

В таблице приводятся способы нанесения металлического слоя и наносимые металлы, и их сплавы.

МЕТАЛЛИЗАЦИЯ
Группа 1 Группа 2
Подгруппа 2а Подгруппа 2б
Электротехнические покрытияХром, цинк. Медьсплавыникель-кобальтхром-никельбронза и прочие Плакирование, в том числе нанесение покрытия взрывомМедь, алюминий, серебро, вольфрам, латунь, бронза, нержавеющая сталь Диффузионное нанесение элементовАлюминий, цинк, молибден и прочие
Плазменное напылениеВольфрам, никель, хром, Al2O3, ZrO2, MoSi2, WC, NbC, ZrB2
Распыление (пульверизация) электродуговым, газопламенным методомАлюминий, серебро, медь, золото, бронза, латунь, сталь Окунание в расплавленный металлЦинк, свинец и прочие
ЭлектрофлрезВольфрам, молибден, кобальт и прочие Диффузионное нанесение сплавовХром-алюминийАлюминий-хром-кремнийТантал-алюминийи прочие
Вакуумное нанесение на нагретую поверхностьХром, титан, оксиды алюминия, циркония и прочие
Химическое нанесениеМедь, ртуть, платина и прочие Электротехнические покрытия с отжигомХром, никель, кадмий
Вакуумное нанесение на холодную поверхностьZn, Cd, Al, Ti, Cr, Au, Ag, Pt, Cu, Sn, W, Mo, TaZn-Al, Pb-ZnPb-Cd и прочие Осаждение чистых металлов из соединений карбонатов в газовой средеCr, Co, W, Ni, Mo, Ta и прочие
Катодное распылениеЗолото, серебро, платина, тантал Осаждение карбидов, нитридов, силицидов, боридов из газообразного состоянияTiC, NbC, W2C, HfC, ZrN, TaN, MoSi2, CrSi2, TaB2, NiB2 и прочие

Из широкого спектра методов следует рассмотреть несколько, которые часто используются на производствах.

Вакуумная металлизация

Формирование наносимого слоя металла в вакууме отличается эффективностью и универсальностью. С его помощью металл можно наносить на любой материал. Во время вакуумной металлизации с металлом, предназначенным для нанесения, происходит ряд превращений, связанных с переходом из одной фазы в другую. Так можно выделить:

  • испарение;
  • конденсирование;
  • адсорбция;
  • кристаллизирование.

Во время процедуры протекает множество физических и химических процессов. Производительность вакуумного метода зависит от типа поверхности, наносимого материала, потока распыленных атомом и прочих.

Вакуумная металлизация

Оборудование, применяемое при вакуумной технологии, делится на три типа:

  1. непрерывного действия;
  2. полу непрерывного действия;
  3. периодического действия.

Различные типы оборудования позволяют его применять как при массовом производстве, так и при единичном изготовлении деталей.

Газовая металлизация

В основе метода газовой металлизации лежит распыление расплавленного металла. С помощью кислородно-ацетиленового пламени начинает плавиться проволока, подаваемая в зону нагрева. Расплав сжатым воздухом удаляется из зоны нагрева и переносится на поверхность. Мелкие капли расплава, соударяясь с поверхностью, становятся плоскими, что обеспечивает лучшую сцепляемость.

Газовая металлизация — схема

На рисунке показана схема головки распылителя. Где по каналу 1 подается кислородно-ацетиленовая смесь, через сопло 2 выходит расплавленный металл, а через камеру 3 выталкивается наружу расплав.

Цинкование

Цинкованием обеспечивается надежная защита от коррозии. Наносимый на поверхность слой содержит не менее 95% цинка. Цинкование проводится несколькими методами, среди которых можно выделить следующие:

  • горячее;
  • холодное;
  • гальваническое;
  • газотермическое;
  • термодиффузионное.

Какой метод использовать для нанесения цинка во многом зависит от того где и при кахих характеристиках будет эксплуатироваться деталь. Цинковое покрытие мягкое, поэтому во время эксплуатации на него не должны оказываться значительные механические нагрузки.

Установка газопламенного напыления проволокой SPRAYJET-88-MV

Установка предназначена для использования в автоматических/роботизированных системах газопламенного проволочного или порошкового напыления. Отличительной особенностью установки является применение автоматической панели управления, осуществляющей управление внешними устройствами безопасности и блокирующей, например, двери, пылеуловитель, манипулятор пистолета и т.д,, если существует какой-то внешний мешающий фактор. Также система контролирует параметры напыления в процессе работы и блокирует процесс с выводом соответствующего сигнала на панель управления, если какой-либо параметр вышел за пределы допустимых значений.

Способы напыления покрытий

Краткие технические характеристики
Масса пистолет 2,3 кг
Применяемый горючий газ Ацетилен
Применяемый вторичный газ кислород
Диаметр проволоки 1,6-4,76 мм
Привод подачи проволоки Электропривод
Возможность автоматизации да

Способы напыления, применяемое оборудование

Существует два вида процесса напыления:

  1. Газодинамическое. Обработка осуществляется мельчайшими частицами, размер которых не превышает 150 мкм.
  2. Вакуумное. Процедура протекает в условиях пониженного давления. Образование защитного слоя происходит в процессе конденсации напыляемого материала на базовой поверхности.

Рассмотрим основные способы обработки, а также особенности используемого оборудования для напыления.

Популярные статьи  Можно ли удлинитель подключить напрямую к розетке в коридоре?

Напыление в магнетронных установках

Технология магнетронной вакуумной металлизации основана на действии диодного газового разряда в скрещенных полях. В процессе работы установки в плазме тлеющего заряда образуются ионы газа, которые воздействуют на распыляемое вещество. Основными элементами магнетронной системы являются:

  • анод;
  • катод;
  • магнитный узел.

Преимущества магнетронного метода:

  • высокая производительность;
  • точность химического состава осажденного вещества;
  • равномерность покрытия;
  • отсутствие термического воздействия на обрабатываемую заготовку;
  • возможность использования любых металлов и полупроводниковых материалов.

С помощью установок получают тонкие защитные пленки в среде специального газа. Напыляемым материалом могут выступать металлы, полупроводники или диэлектрики. Скорость образования слоя зависит от силы тока и давления рабочего газа.

Ионно-плазменное напыление

В состав принципиальной схемы оборудования для ионно-плазменного насаждения входят следующие элементы:

  • анод;
  • катод-мишень;
  • термокатод;
  • камера;
  • заготовка.

Алгоритм действия установки:

  1. В камере создается пониженное давление.
  2. На термокатод, который является вспомогательным источником электронов, подается ток.
  3. Вследствие нагрева возникает термоэлектронная эмиссия.
  4. В камеру подают инертный газ. Наибольшей популярностью пользуется аргон.
  5. Между анодом и термокатодом возникает напряжение, которое инициирует образование плазменного тлеющего заряда.
  6. На катод подают мощный заряд.
  7. Положительные ионы воздействуют на распыляемый материал-мишень.
  8. Распыленные атомы осаждаются на заготовке в виде тонкого покрытия.

Ионно-плазменное осаждение используют в качестве декоративных или защитных покрытий, которые характеризуются высокой плотностью и прочностью, а также отсутствием изменений в стереохимическом составе.

Плазменное напыление

  1. Рабочая температура плазмы может достигать 6000 ºC. Это способствует высокой скорости осаждения состава на поверхности. Длительность процесса – десятые доли секунды.
  2. Существует возможность изменения структурного состава поверхности заготовки. Вместе с горячей плазмой в верхние слои изделия могут диффундировать отдельные химические элементы.
  3. Плазменная струя отличается неизменными показателями давления и температуры. Это положительно влияет на качество напыления.
  4. Благодаря малому времени обработки заготовка не подвергается вредным поверхностным факторам, таким как перегрев или окисление.

В качестве источника энергии для образования плазмы используют искровой, импульсный или дуговой разряд.

Лазерное напыление

  • повышения прочности поверхностного слоя;
  • восстановления геометрии изделия;
  • снижения коэффициента трения;
  • защиты от коррозионных процессов.

В отличие от прочих методов металлизации источником тепла является энергия излучения лазера. Высокая точность фокусировки позволяет добиться концентрации энергии точно в зоне работы. Это снижает термическое воздействие на заготовку, что позволяет избежать изменения геометрии изделия и дает возможность осуществить напыление практически любого материала.

Благодаря высокой скорости охлаждения в поверхностном слое металла образуются структуры с высокой твердостью, что повышает эксплуатационные характеристики детали.

Вакуумное напыление

  • испарение;
  • конденсация;
  • адсорбция;
  • кристаллизация.

Производительность процесса зависит от многих факторов: структуры заготовки, типа наносимого материала, скорости потока заряженных частиц и многих других.

Вакуумные установки отличаются принципом действия. Существует непрерывное, полунепрерывное, а также периодическое оборудование.

Вакуумное термическое напыление

Что такое вакуумное термическое напыление? Вакуумное термическое напыление это современный процесс получения оптических зеркальных покрытий. Отполированный лист стекла или стеклянную деталь оптического прибора, размещают в вакуумной камере, в которую встроен вольфрамовый испаритель. Вольфрамовый испаритель представляет собой нагреваемую электрическим током вольфрамовую проволоку или вольфрамовую лодочку. Изогнутый отрезок алюминиевой проволоки массой от 50 до 200 мг, одевают на вольфрамовую проволоку. Расплавленный алюминий, в высоком вакууме, хорошо смачивает вольфрам. На вольфрамовой проволоке образуется висячая капелька алюминия.

Для напыления больших по площади поверхностей изделий, используют нагреваемые вольфрамовые лодочки, в которые размещают алюминиевые гранулы или обрезки алюминиевой проволоки. Перед тем как стеклянную деталь поместить в вакуумную камеру, стекло тщательно очищают от различных загрязнений (например, от масел или жира). Как правило, для очистки стекол, используют органические растворители.

После создания вакуума в вакуумной установке, нагревают вольфрамовый испаритель до температуры 1500 – 2500 градусов, в зависимости от требуемой технологии. Под действием высокой температуры алюминий начинает испаряться. Образующиеся атомы алюминия, в вакууме летят по прямой линии. Мельчайшие частицы алюминия (атомы алюминия), ударяются об напыляемую поверхность стекла и начинают прилипать к нему.

Для лучшего сцепления алюминиевой пленки со стеклом, сначала разогревают стекло до температуры 200 – 400 градусов и применяют вакуумную очистку поверхности стекла ионной имплантацией или бомбардировкой ионами.

Для улучшения стойкости напыляемой пленки и улучшения оптических свойств, иногда изготовители зеркал, напыляют на стекло в вакууме подслой диоксида кремния. Другие производители зеркал создают сначала подслой оксида алюминия, который образуется окислением чистого кислорода или воздухом, в без вакуумной нагреваемой печи.

Изготовленные зеркала этим методом, представляют собой зеркала, работающие на просвет. Отраженный свет от зеркальной поверхности в таких зеркалах, дважды проходит сквозь слой стекла. Так устроена работа всех бытовых зеркал, не прецизионных зеркал оптических приборов (это зеркала оптических проекторов, осветительные предметные зеркала оптических микроскопов) и зеркала внешнего отражения, в которых отражающая свет пленка, нанесена на какой – либо материал (необязательно прозрачного для света), обычно это может быть кварцевое стекло или пирекс, такие зеркала принимают участие в построении изображения во всех оптических приборах (это зеркала объективов, телескопов, плоские зеркала лазерных принтеров и ксероксов), этот вид зеркал снижает аберрации оптической системы (ошибки или погрешности изображения в оптической системе). Слой стекла, защищает относительно нестойкий слой серебра от царапин, коррозии и других повреждений.

Популярные статьи  Нужно ли тянуть отдельные провода на духовой шкаф и стиральную машину?

Есть еще оптические зеркала, такие как зеркало Мэнгина, которые имеет зеркальную поверхность с обратной стороны оптической линзы. Отклонение света в таких оптических зеркалах, обусловлено как рефракцией (преломлением) в стеклянной линзе, так и кривизной поверхности зеркала. Эти два фактора учитываются при расчетах в таких оптических системах. Это могут быть оптические зеркала в длиннофокусных объективах. Такие оптические зеркала позволяют сократить их массу и длину, по сравнению с оптическими системами без зеркал, при равных параметрах.

Несмотря на то, что бытовые зеркальные стекла, еще продолжают изготавливать химическим серебрением, зеркала в точных оптических инструментах (телескопы), производят вакуумным напылением алюминия. Серебро в сравнении с алюминием, имеет больший коэффициент отражение света. Сегодня не применяется для оптических зеркал в точных оптических инструментах. Это связано с тем, что серебро очень быстро тускнеет и покрывается пленкой сульфида серебра (Ag2S). Алюминий тоже окисляется кислородом, содержащимся в воздухе, покрывается тонкой и прозрачной пленкой оксида алюминия (Al2O3), предохраняющей металл от коррозии и не значительно снижающий коэффициент отражения.

Вакуумное напыление стекла может осуществляться не только алюминием, но и золотом. Вакуумное напыление металлическим золотом, применяется в оптических зеркалах, работающих в ближнем инфракрасном диапазоне. Золото в сравнении с алюминием, имеет больший коэффициент отражения света и лучшую устойчивость к коррозии.

Применение

Металлизация используется для изменения характеристик обрабатываемого изделия. После того, как нанесли слой металла или сплава, деталь получает дополнительную стойкость к высоким температурам, коррозии, износу, эрозии. Кроме этого нанесенный слой может служить для защиты и декоративного оформления готового изделия. С помощью металлизации производится восстановление изношенных деталей.

Способы напыления покрытий

Поверхность детали после металлизации

Области применения:

  • Электромашиностроение. Электротехнические компоненты необходимы в любой из отраслей промышленности. Их необходимо защитить от изнашивания, обеспечить точный уровень электрической проводимости. Покрытие металлизация используется при изготовлении:
    1. микроволновых схем;
    2. электродов конденсаторов;
    3. микроволновых отражателей;
    4. катушек индукции;
    5. керамических резисторов;
    6. валов двигателей.
  • Транспортная промышленность. Нанесенный слой обеспечивает эксплуатирующимся деталям защиту от коррозии, механического воздействия, повышенной температуры. Методом покрытия пользуются при изготовлении:
    1. поршней
    2. компрессионных колец;
    3. распредвалов;
    4. стопорных колец;
    5. полуосей;
    6. тормозных дисков;
    7. вытяжных вентиляторов;
    8. гидроцилиндров;
    9. теплоотводов;
    10. шасси;
    11. глушителей;
    12. деталей двигателей;
    13. деталей коробок скоростей.
  • Авиационная и космическая промышленность. Термическое напыление обеспечивает термостойкость, коррозионостойкость, сопротивляемость трению. Напыляют на:
    1. детали двигателя:
    2. роторы;
    3. лопатки турбин;
    4. лопатки компрессоров;
    5. камеры сгорания;
    6. сопла;
    7. детали механизмов руля и управления крыльями;
    8. стойки шасси;
    9. топливные оправки.
  • Текстильная промышленность. Элементы ткацких станков подвержены абразивному изнашиванию из-за высоких скоростей и трения. Обрабатываются:
    1. ролики;
    2. оси.
  • Бумажная промышленность и полиграфия. Твердые металлы обеспечивают защиту от волокон целлюлозы и химических чернил. Обработке подлежат:
    1. цилиндры на печатных машинах;
    2. анилоксовые валы;
    3. цилиндры бумагоделательных машин;
    4. подшипники скольжения.
  • Энергетика. Газовые турбины работают при высоких температурах, поэтому их детали подлежат обработке металлизацией.
    1. Детали газовых агрегатов: турбин и компрессоров
    2. детали паровых агрегатов;
    3. детали гидравлических агрегатов;
    4. запорная арматура.
  • Защита поверхностей:
    1. стальных несущих конструкций, работающих в водной (пресной) среде;
    2. стальных несущих конструкций, работающих с морской водой;
    3. морского транспорта;
    4. металлических конструкций от воздействия высоких температур:
    5. дымоходы;
    6. вытяжки на газовых турбинах;
    7. выпускные коллекторы автомобилей;
    8. сопла ракет;
    9. металлоконструкций от коррозии на промышленных площадках:
    10. железнодорожные мосты;
    11. конструкции бассейнов;
    12. контейнеры;
    13. резервуары, хранящие нефтепродукты;
    14. металлоконструкций от химических реакций:
    15. трюмы танкеров;
    16. установки очистки сточных вод.
  • Химическая, нефтеперерабатывающая промышленность, например:
    1. запорная арматура;
    2. уплотнители;
    3. посадочные места машин и агрегатов;
    4. теплообменники;
    5. резервуары.
  • Металлургическая промышленность:
    1. прокатные станы;
    2. кристаллизаторы;
    3. оборудование для прокатки проволоки, в том числе из цветных сплавов.
  • Инструменты:
    1. прессовые штампы;
    2. несущие поверхности;
    3. вторичный двигатель.
  • Тяжелое машиностроение:
    1. платформы;
    2. буры;
    3. краны;
    4. экскаваторы.

Пищевая промышленность.

  • Декоративные изделия:
    1. посуда;
    2. бумага;
    3. ткань.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: