Характеристики диодов шоттки in5822

Универсальные и импульсные диоды: Диоды с барьером Шоттки

Диоды с барьером Шоттки (их также называют диоды Шоттки, а в специальной литературе и технической документации встречается аббревиатура ДБШ) — это полупроводниковые приборы, построенные на основе структуры металл-полупроводник. Такой электрический переход обладает рядом особенных свойств (отличных от свойств полупроводникового p-n-перехода). К ним относятся:

  • пониженное падение напряжения при прямом включении,
  • высокий ток утечки,
  • очень маленький заряд обратного восстановления.

Последнее объясняется тем, что по сравнению с обычным \(p\)-\(n\)-переходом у таких диодов отсутствует диффузия, связанная с инжекцией неосновных носителей, т.е. они работают только на основных носителях, а их быстродействие определяется только барьерной емкостью.

Импульсные (высокочастотные) свойства диодов Шоттки определяются их граничной рабочей частотой: \(f_р = \cfrac{1}{2 \pi r_с C_б}\), где \(r_с\) — сопротивление перехода, \(C_б\) — барьерная емкость. В диодах Шоттки предельная частота значительно выше, чем у диодов на \(p\)-\(n\)-переходах. Это достигается как за счет технологии изготовления диодов, так и выбором оптимальной конструкции.

Диоды Шоттки изготавливаются обычно на основе кремния (Si) или арсенида галлия (GaAs), реже — на основе германия (Ge), а для приборов субмиллиметрового диапазона длинн волн находят применение такие материалы как фосфид индия (InP) и арсенид галлия-индия (InGaAs). Выбор металла для контакта с полупроводником определяет многие параметры диода. В первую очередь важна величина контактной разности потенциалов, образующейся на границе металл-полупроводник. При использовании диода Шоттки в качестве детектора она определяет его чувствительность, а при использовании в смесителях — необходимую мощность гетеродина. Поэтому чаще всего используются металлы Ag, Au, Pt, Pd, W, которые наносятся на полупроводник и дают величину потенциального барьера 0,2…0,9 эВ.

Диоды Шоттки используются для выпрямления малых напряжений высокой частоты, в высокочастотных смесителях, в ключах и коммутаторах, умножителях частоты и других быстродействующих импульсных цепях. Например, включение диода Шоттки между базой и коллектором биполярного транзистора, работающего в ключевом режиме, позволяет предотвратить накопление избыточных носителей заряда в базовой области транзистора, тем самым сократив время срабатывания ключа.

Часто переходы Шоттки вводят непосредственно в полупроводниковые структуры разных электронных приборов (биполярных и полевых транзисторов, тиристоров и т.д.) для улучшения их импульсных характеристик. Упомянутое выше, включение диода Шоттки между базой и коллектором биполярного транзистора можно реализовать на интегральном уровне, раширив контакт базы на коллекторную область — так называемый транзистор Шоттки, который широко используется в цифровых микросхемах и является основой логики ТТЛШ. Аналогичным образом в полевых транзисторах с управляющим переходом замена обычного p-n-перехода на переход Шоттки позволяет существенно улучшить импульсные и частотные характеристики (см. Полевые транзисторы Шоттки).

Прямая ветвь ВАХ у диодов Шоттки подчиняется экспоненциальному закону в широком диапазоне токов, что позволяет их использовать как прецизионные логарифмирующие элементы (см. Схемы логарифмирования сигналов).

Важной особенностью диодов Шоттки является меньшее прямое падение напряжения (примерно на 0,2 В) по сравнению с обычными диодами, что делает их очень удобными (более эффективными) для использования не только в импульсной, но и в силовой электронике. В связи с этим широкое распространение получили также выпрямительные диоды с барьером Шоттки

В различной литературе часто можно встретить специальное обозначение для диодов Шоттки (рис. 2.4‑1), которое обычно применяется только тогда, когда необходимо сделать особенный акцент на том, что используемые в схеме диоды — это диоды Шоттки.

Рис. 2.4-1. Обозначение диода Шоттки

Следующая >

Недостатки

Диод 1n5819: характеристики

Основной недостаток диода 1N5822 – это низкое обратное напряжение, равное 40 вольтам. Данная проблема свойственна всем барьерам Шоттки и объясняется особенностью их строения. Обычный диод после пробоя повышенным обратным напряжением в ряде случаев способен вернуться к нормальной работе. С диодами Шоттки, такими как 1N5822, подобного чуда уже не произойдёт, и деталь полностью выйдет из строя. Такая характеристика по обратному вольтажу обрекает эти электронные компоненты на работу только в низковольтных цепях. Значит, существенно снижаются их универсальность и количество устройств, в которых их можно встретить.

Второй минус 1N5822 состоит в высоком обратном токе утечки. Речь идёт о таком подключении детали, при котором на катод приложен больший потенциал, чем на анод. В идеале p-n переход не должен проводить ток в таком направлении. На деле некоторая часть зарядов всё-таки протекает и в обратную сторону. Поэтому данный ток называется утечкой, т.е. чем-то нежелательным и неправильным.

Данная проблема свойственна опять же всем барьерам Шоттки, а не только 1N5822. Конкретно для этого диода ток утечки сильно зависит от температуры и может достигать 0,2 ампер. При этом проблема имеет лавинообразный характер, т.е., если через диод начинает протекать обратный ток, то он нагревается. Повышение температуры, в свою очередь, приводит к возрастанию утечки. Это ещё сильнее увеличивает нагрев. Так по замкнутому кругу, пока деталь окончательно ни перегреется, и ни произойдёт её тепловой пробой, имеющий необратимый характер. Поэтому, если 1N5822 будет использоваться в режимах, близких к перегрузке, следует позаботиться об отводе лишнего тепла.

1N5822 диод характеристики которого позволяют использовать его в выходных цепях современных блоков питания. Он с каждым днём становится всё более востребованным. Объясняется это способностью работать на больших для такого корпуса токах до 3 ампер и при достаточно высоких частотах.

Общая информация

Свое название эти детали получили в честь немецкого ученого В. Шоттки, за которым числится заслуга определения свойств барьерной области в месте соприкосновения полупроводящего элемента с металлом. В роли первого в диодных изделиях часто выступает арсенид галлия. Иногда применяется и кремниевый полупроводник. Металлические детали могут быть платиновыми или серебряными, реже встречаются варианты из золота.

Характеристики диодов шоттки in5822
Вариант для поверхностного монтажа

По своим параметрам данные изделия во многом отличаются от диодов из кремния, использующих p–n переход:

  1. Они обладают небольшим значением емкости перехода. Это дает возможность работы в условиях высоких частот, позволяет применять эти компоненты для создания цифровых схем.
  2. Когда изделие Шоттки подключается прямо, напряжение снижается на величину, в 2-3 раза меньшую, чем при включении стандартного изделия, предназначенного для выпрямления. Из-за этого феномена они более продуктивны в ситуации прохождения прямого тока, так как меньшее значение падения предполагает, что потери тепла, рассеиваемого в окружающую среду, будут значительно ниже. Но, если показатель обратного напряжения существенно растет, обгоняя значение в сотню вольт, величина падения также растет и становится несильно отличимой от ситуации использования традиционного диода. Данный эффект обусловливает границы оптимального напряжения эксплуатации данного типа диодных элементов: их лучше выбирать тогда, когда напряжение исчисляется десятками вольт.
  3. Также эти диоды отличаются быстротой восстановления, поэтому их можно использовать в конфигурациях, выпрямляющих напряжение до 100 килогерц и выше. Благодаря отсутствию диффузного процесса сторонних носителей электрического заряда, данные диодные компоненты отличаются повышенным быстродействием.
Популярные статьи  Рейтинг светодиодных ламп: 11 лучших производителей

Важно! В ситуации, когда средний ток равен одной единице измерения (1 А), а обратный параметр напряженности не превышает 40 В, часто устанавливают модель in5819. Она выпускается в двух исполнениях

SMD-вариант для поверхностной установки имеет пластмассовый корпус и снабжается маркировкой SS14. Цилиндрический вариант с длинными «усиками»-выводами, предназначенными для продевания в подготовленные отверстия на плате, также имеет корпус из пластика.

Характеристики диодов шоттки in5822
Традиционное исполнение данного диода

Выпрямители: Особенности выбора выпрямительных диодов

При выборе диодов выпрямителя необходимо учитывать целый набор факторов, определяемых: принципиальной схемой выпрямителя, частотой и величиной входного переменного напряжения, величинами напряжения и тока нагрузки, условиями эксплуатации (температура, влажность, устойчивость входного напряжения и т.п.), характером нагрузки (емкостная, индуктивная), наличием коммутационных перегрузок в цепи нагрузки, параметрами применяемого трансформатора и т.д.

В первую очередь необходимо рассчитать значение максимального обратного напряжения, прикладываемого к силовым диодам при работе выпрямителя выбранного типа, а также оценить среднее значение протекающего через них прямого тока (это можно сделать по приближенным формулам, приводимым в таб. 3.4-1). Полученные таким образом значения необходимо откорректировать в зависимости от характера нагрузки.

Таб. 3.4-1. Режимы работы диодов в различных выпрямителях

При наличии активно-емкостной нагрузки (а это чаще всего именно так) амплитудное и действующее значения тока силовых диодов могут существенно превышать его расчетное среднее значение. Так, например, при допустимом уровне пульсаций на выходе порядка 0,1% в однофазном мостовом выпрямителе с емкостным фильтром амплитудное значение тока выпрямительных диодов может достигать \( \cdot I_\) . В целях исключения перегрузки диодов по величине действующего и амплитудного значений токов и их перегрева, необходимо ужесточить требования к максимальному прямому среднему току (\(I_\)) применяемых диодов. Практически, для однополупериодного выпрямителя используется коэффициент 2,2, а для двухполупериодного 1,1 (т.е. используемые диоды должны иметь значение \(I_\) как минимум в 1,1 раза большее, чем это следует из значений, полученных по формулам из таб. 3.4-1).

Величина максимально допустимого повторяющегося обратного напряжения (\(U_\)) используемых диодов также подвержена влиянию нагрузки (характер этого влияния может быть вычислен по формулам, приводимым далее). Во избежание ее превышения в начальный момент времени после включения выпрямителя и во время его работы (в т.ч. и на холостом ходу), силовые диоды должны выбираться с некоторым запасом и по этому параметру.

Опираясь на найденные значения \(I_\) и \(U_\) (не забывая также о предполагаемой частоте входного переменного напряжения), по таблицам справочных данных производят предварительный выбор силовых диодов

Немаловажное значение для характеристик выпрямителя имеет тип выбранных выпрямительных диодов. Напомним, что в качестве выпрямительных могут использоваться кремниевые, германиевые или арсенид-галлиевые диоды с \(p\)‑\(n\)‑переходом (в т.ч

лавинные диоды), а также кремниевые или арсенид-галлиевые диоды с переходом Шоттки.

Германиевые выпрямительные диоды довольно широко использовались 10..20 лет назад. В настоящее время они практически полностью вытеснены более совершенными кремниевыми и арсенид-галиевыми приборами. И только в некоторых довольно редких случаях немногие положительные свойства германиевых диодов могут обусловить их применение в выпрямителях. Основными свойствами германиевых диодов с \(p\)-\(n\)-переходом являются:

  • низкое прямое падение напряжения (на германиевом диоде при максимально допустимом прямом токе падение напряжения приблизительно в два раза меньше, чем на аналогичном кремниевом диоде), что является существенным, но, к сожалению, единственным преимуществом перед кремниевыми выпрямительными диодами;
  • существование явно выраженного тока насыщения при обратном включении диода;
  • значительно большая величина обратного тока по сравнению с аналогичными кремниевыми диодами;
  • пробивное напряжение уменьшается с ростом температуры (большие обратные токи германиевых диодов являются причиной теплового характера их пробоя), а значение этого напряжения меньше пробивных напряжений кремниевых диодов.
  • верхний предел диапазона рабочих температур германиевых диодов составляет приблизительно 75 °C, что значительно ниже по сравнению с тем же параметром кремниевых диодов.

Диоды Шоттки в блоках питания

В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3В и +5В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит к необходимости очень серьезно относиться к вопросам быстродействия выпрямителей и снижения их энергетических потерь. Решение этих вопросов способно значительно увеличить КПД источников питания и повысить надежность работы силовых транзисторов первичной части блока питания.

Итак, для уменьшения динамических коммутационных потерь и устранения режима короткого замыкания при переключении, в самых сильноточных каналах (+3.3В и +5В), где эти потери наиболее значительны, в качестве выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки в этих каналах обусловлено следующими соображениями:

  • Диод Шоттки является практически безынерционным прибором с очень малым временем восстановления обратного сопротивления, что приводит к уменьшению обратного вторичного тока и к уменьшению броска тока через коллекторы силовых транзисторов первичной части в момент переключения диода. Это в значительной степени снижает нагрузку на силовые транзисторы, и, как результат, увеличивает надежность блока питания.
  • Прямое падение напряжения на диоде Шоки также очень мало, что при величине тока 15–30 А обеспечивает значительный выигрыш в КПД.

Так как в современных блоках питания очень мощным становится и канал напряжения +12В, то применение диодов Шоттки в этом канале также дало бы значительный энергетический эффект, однако их применение в канале +12В нецелесообразно. Это связано с тем, что при обратном напряжении свыше 50В (а в канале +12В обратное напряжение может достигать величины и 60В) диоды Шоттки начинают плохо переключаться (слишком долго и при этом возникают значительные обратные токи утечки), что приводит к потере всех преимуществ их применения. Поэтому в канале +12В используются быстродействующие кремниевые импульсные диоды.

Устройства диода.

Хотя промышленностью сейчас выпускаются диоды Шоттки и с большим обратным напряжением, но их использование в блоках питания считается нецелесообразным по разным причинам, в том числе и экономического плана. Но в любых правилах имеются исключения, поэтому в отдельных блоках питания можно встретить диодные сборки Шоттки и в каналах +12В. В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки из двух диодов (диодные полумосты), что однозначно повышает технологичность и компактность блоков питания, а также улучшает условия охлаждения диодов. Использование отдельных диодов, а не диодных сборок, является сейчас показателем низкокачественного блока питания.

Советуем изучить — Siemens logo

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Популярные статьи  Как сделать подсветку в шкафу?

Характеристики диодов шоттки in5822
Рис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Характеристики диодов шоттки in5822
Рис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Характеристики диодов шоттки in5822
Пример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Типы диодов

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны коронного и тлеющего разряда), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Диоды
Полупроводниковые Не полупроводниковые
Газозаполненные Вакуумные

Ламповые диоды

Основная статья: Электровакуумный диод

Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается проходящим через него током из специальной цепи накала или отдельной нитью накала. Благодаря этому часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если электрическое поле направлено в противоположную сторону, поле препятствует движению электронов, и тока (практически) нет.

Полупроводниковые диоды

Полупроводниковый диод в стеклянном корпусе. На фотографии виден полупроводник с подходящими к нему контактами Основная статья: Полупроводниковый диод

Полупроводниковый диод состоит либо из полупроводников p-типа и n-типа (полупроводников с разным типом примесной проводимости), либо из полупроводника и металла (диод Шоттки). Контакт между полупроводниками называется p-n переходом и проводит ток в одном направлении (обладает односторонней проводимостью).

Специальные типы диодов

Цветные светодиоды Светодиод ультрафиолетового спектра излучения (увеличен)

  • Стабилитрон (диод Зенера) — диод, работающий в режиме (обратимого) пробоя p-n-перехода (см. обратную ветвь вольт-амперной характеристики). Используются для стабилизации напряжения.
  • Туннельный диод (диод Лео Эсаки) — диод, в котором используются квантовомеханические эффекты. На вольт-амперной характеристике имеет область так называемого «отрицательного сопротивления». Применяются как усилители, генераторы и пр.
  • Обращённый диод — диод, имеющий гораздо более низкое падение напряжения в открытом состоянии, чем обычный диод. Принцип работы такого диода основан на туннельном эффекте.
  • Точечный диод — диод, отличающийся низкой ёмкостью p-n-перехода и наличием на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением. Ранее использовались в СВЧ-технике (благодаря низкой ёмкости p-n-перехода) и применялись в генераторах и усилителях (благодаря наличию на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением).
  • Варикап (диоды Джона Джеумма) — диод, обладающий большой ёмкостью при запертом p-n-переходе, зависимой от приложенного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости (управляемых напряжением).
  • Светодиод (диоды Генри Раунда) — диод, отличающийся от обычного диода тем, что излучает фотоны при рекомбинации электронов и дырок в p-n-переходе. Выпускаются светодиоды с излучением в инфракрасном, видимом, а с недавних пор — и в ультрафиолетовом диапазоне.
  • Полупроводниковый лазер — диод, близкий по устройству к светодиоду, но имеющий оптический резонатор. Излучает когерентный свет.
  • Фотодиод — диод, управляемый светом.
  • Солнечный элемент — диод, похожий на фотодиод, но работающий без смещения. Падающий на p-n-переход свет вызывает движение электронов и генерацию тока.
  • Диод Ганна — диод, используемый для генерации и преобразования частоты в СВЧ-диапазоне.
  • Диод Шоттки — диод с малым падением напряжения при прямом включении.
  • Лавинный диод — диод, принцип работы которого основан на лавинном пробое (см. обратный участок вольт-амперной характеристики). Применяется для защиты цепей от перенапряжений.
  • Лавинно-пролётный диод — диод, принцип работы которого основан на лавинном умножении носителей заряда. Применяется для генерации колебаний в СВЧ-технике.
  • Магнитодиод — диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
  • Стабистор — диод, при работе которых используется участок ветви вольт-амперной характеристики, соответствующий «прямому напряжению» на диоде.
  • Смесительный диод — диод, предназначенный для перемножения двух высокочастотных сигналов.
  • pin-диод — диод, обладающий меньшей ёмкостью за счёт наличия между сильнолегированными полупроводниками p- и n-типов материала, характеризующегося собственной проводимостью. Используется в СВЧ-технике, силовой электронике, как фотодетектор.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Будет интересно Как устроен туннельный диод?

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).
Популярные статьи  Автоматические терморегуляторы для радиаторов данфосс, овентроп

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Будет интересно SMD транзисторы

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Диоды высокого тока.

TVS-диоды TRANSZORB фирмы General Semiconductor

TVS-диоды TRANSZORB фирмы General Semiconductor выпускаются в различных исполнениях, с учетом условий эксплуатации и области применения. Дискретные диоды в пластиковом корпусе с гибкими выводами, предназначенными для монтажа в сквозные отверстия, выпускаются со значениями максимальной допустимой импульсной мощности 400 Вт, 500 Вт, 600 Вт, 1,5 кВт и 5 кВт. Диоды с наибольшими значениями максимальной допустимой импульсной мощности обычно используются для установки в цепях питания. При более низких значениях мощности в приложениях с высокой плотностью расположения компонентов используются диоды и диодные сборки, которые выпускаются как в DIP-корпусах, так и в корпусах для поверхностного монтажа. Они выпускаются со значениями максимальной допустимой импульсной мощности 400 Вт, 500 Вт, 600 Вт, 1,5 кВт и 5 кВт. Диодные сборки обычно используются на линиях передачи данных для защиты портов ввода/вывода от электростатических разрядов. Кроме того, выпускаются специализированные низкоемкостные TVS-диоды, применяемые в цепях с высокой скоростью передачи данных с целью предотвращения затухания полезных сигналов. TVS-диоды TRANSZORB выпускаются для работы в цепях с рабочими напряжениями от 5 до 376 В. Ввиду широкого диапазона возможных рабочих напряжений и допустимых номинальных мощностей (так же, как и перенапряжений) TVS-диоды TRANSZORB используются в различных электронных схемах и приложениях.

Замена

Несмотря на распространенность данной модели, может возникнуть ситуация, при которой нужного диода не окажется в домашнем запаснике. В таком случае следует прибегнуть к поиску альтернативы. С этим не будет проблем, поскольку есть компоненты, полностью совместимые или близкие по характеристикам.

Отечественные аналоги 1n4007

Идеальный вариант для замены – КД 258Д, его характеристики практически идентичны импортной модели, а по некоторым параметрам он даже превосходит ее.

КД 258Д – практически полный аналог 1N4007

Не смотря на очевидные преимущества отечественного аналога, у него есть существенный недостаток – высокая стоимость (по сравнению с 1N4007). Оригинал стоит порядка $0.05, в то время, как наша деталь порядка $1. Согласитесь, разница существенная.

В некоторых случаях можно использовать диоды Д226, КД208-209, КД243 и КД105, но предварительно потребуется проанализировать их характеристики на предмет совместимости с режимом работы в том или ином устройстве.

Зарубежные аналоги

Среди импортных деталей более широкий выбор для полноценной замены, в качестве примера можно привести следующие модели:

  • HEPR0056RT, выпускается компанией Моторола;
  • среди продукции Томпсон есть два полных аналога: BYW27-1000 и BY156;
  • у Филипса это BYW43;
  • и три компонента (10D4, 1N2070, 1N3549) от компании Diotec Semiconductor.

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.

Характеристики диодов шоттки in5822

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

Советуем изучить — Что такое фидер в электрике?

Характеристики диодов шоттки in5822

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: