Тиристорный электропривод

Принцип действия и конструктивные особенности

Чтобы преобразовать нагрузку применяют тиристорный преобразователь цепей высокого напряжения на основе IGBT. Частотный преобразователь на тиристорах – это прибор преобразования тока, регулировки его параметров и уровня тока. Частотным преобразователем можно выровнять значения параметров приводов на электромоторах: угол, обороты вала при запуске и другие.

Схема тиристорного выравнивателя.

Для мотора постоянного тока используют преобразователь на тиристорах. Достоинства этого прибора позволили создать ему широкое применение. К преимуществам относятся:

  • КПД (95%) у марки ПН-500.
  • Область контроля: мотора от малых мощностей до мегаватт.
  • Может выдерживать значительные импульсы нагрузок запуска двигателя.
  • Долговечная и надежная эксплуатация.
  • Точность.

Недостатки имеются и у этой системы. Мощность находится на низшем уровне. Это проявляется при точном регулировании процесса производства. В качестве компенсации используют дополнительные устройства. Такой частотный преобразователь не может работать без помех. Это видно при эксплуатации чувствительных приборов электрооборудования и радиотехнических устройств.

Составные части:

  1. Реактор в виде трансформатора.
  2. Блоки выпрямления тока.
  3. Реактор для сглаживания преобразования.
  4. Перенапряжение не воздействует на защиту.

Преобразователи (2017 г) подключаются через реактор. Трансформатор служит для согласования звена напряжения выхода и входа, выравнивания между ними напряжения. Схема электрического соединения включает в себя реактор для сглаживания. Частотный преобразователь имеет схему, в которой есть сглаживающий реактор.

Частотник пропускает нагрузку. Нагрузка идет в блоки выпрямителя в выходное звено. Чтобы выровнять питание нескольких устройств подключают индукционные потребители на специальных шинах.

Преобразователи частоты бывают двух типов – высокочастотные и низкочастотные. Подбор нужной модели осуществляется по необходимым параметрам цепей электроэнергии. В 3-фазных станках тип подключения иной. 1-фазный ток переносит воздействия, но КПД теряется на преобразовании 3-фазного тока.

Система применяется в плавильном производстве, контроле подъемно-транспортных устройствах, сварочном производстве. Такой принцип работы нагрузки реализовывает систему двигателя с генератором. На наименьших оборотах двигателя происходит регулировка оборотов шпинделя в широком диапазоне, настройка разных характеристик привода мотора.

Тиристорный электропривод

Тиристорные электроприводы с двигателями смешанного возбуждения позволяют использовать такие преимущества этих двигателей, как большая перегрузочная способность и более благоприятная форма естественной механической характеристики, обеспечивающая при меньших грузах большие частоты вращения.

Тиристорные электроприводы для кранов.

Тиристорные электроприводы с двигателями смешанного возбуждения позволяют использовать такие преимущества этих двигателей, как большая перегрузочная способность и более благоприятная форма естественной механической характеристики, обеспечивающая при меньших грузах большие частоты вращения.

Тиристорные электроприводы для кранов.

Структурная схема низкоскоростного двигателя серии ВД.| КПД и коэффициент.

Тиристорный электропривод по схеме ПЧВС обеспечивает: пуск двигателя, работу в диапазоне частоты вращения ( 0 06 — М) яном, реверсирование, рекуперативное торможение, автоматическую синхронизацию двигателя с сетью, оптимизацию переходных процессов автоматическим ограничением тока на уровне ( l 5 — j — 2) / HOM.

Структурная схема электропривода по схеме вентильного двигателя серии.

Тиристорные электроприводы по схеме вентильного двигателя серии ПЧВС предназначены для обеспечения пуска и регулирования частоты вращения мощных высоковольтных синхронных двигателей.

Тиристорный электропривод на базе вентильного двигателя предназначен для механизмов, у которых изменение технологических режимов достигается регулированием частоты вращения синхронного двигателя СД, ограниченными пусковым-моментом и током. Упрощенная схема привода с вентильным двигателем представлена на рис. 2.12. Основными элементами привода являются управляемые тиристор-ные выпрямитель В и инвертор И, с помощью которых осуществляется выпрямление сетевого тока и преобразование выпрямленноге тока в ток регулируемой частоты для питания синхронного двигателя.

Осциллограммы фазовых напряжений до ( а и после ( б сетевых реакторов.

Тиристорный электропривод со схемой преобразователя, имеющего шестифазные пульсации, мало влияет на содержание в напряжении сети высших гармонических составляющих, если мощность сети в 150 — 200 раз превышает мощность электродвигателя постоянного тока. При этом существенно снижается вероятность взаимного влияния работы преобразователей. Указанное превышение мощности трансформатора по экономическим соображениям мало целесообразно. Для предотвращения влияния работы одного преобразователя на работу другого устанавливают сетевые токоограничивающие реакторы, требуемая индуктивность которых зависит от параметров питающего трансформатора. Поэтому экономия от применения группового трансформатора несколько снижается. При отсутствии сетевых реакторов в тирйсторных электроприводах возможно появление автоколебаний. Назначение этих реакторов состоит в уменьшении токов короткого замыкания и устранении при правильном выборе их индуктивности автоколебаний в системе. На рис. 31 приведены осциллограммы фазовых напряжений преобразователя до и после сетевых реакторов.

Тиристорный электропривод сборочных станков с бесконтактной.

Тиристорные электроприводы в зависимости от назначения и исполнения крановых механизмов могут быть одно — и многодвигательными. Многодвигательные приводы находят применение для механизмов передвижения, а также механизмов подъема большой мощности. Источником питания ТП является сеть переменного тока напряжением 380 В.

Кривые выбега электродвигателей с постоянным моментом.

Тиристорные электроприводы переменного и постоянного тока и другие сложные электроприводы автоматически переводят в пусковой режим.

Принцип работы и конструкция

Для преобразования нагрузки может использоваться тиристорный или транзисторный высоковольтный преобразователь на базе IGBT. Тиристорный частотный преобразователь (ТП, ТПР или ТПЧ) – это электрическое устройство для преобразования переменного тока в постоянный, регулирования его уровня и прочих характеристик. С его помощью можно уравнивать различные параметры электрических редукторов: скорость вращения в момент пуска, угол и прочие.

Тиристорный электропривод
Фото — тиристорный уравнитель

Тиристорный преобразователь применяется для двигателя постоянного тока (ДПТ) вместе с системой автоматического регулирования (FR A700 в Mitsubishi Electric, Siemens Simoreg DC Master, Omron Yaskawa). Он имеет очень широкую область применения благодаря своим достоинствам:

  1. Высокий показатель КПД – до 95 % (к примеру, у модели ПН-500);
  2. Широкий спектр контроля. Его можно использовать для двигателя с мощностью от десятых киловатта до нескольких мегакиловатт;
  3. Способность выдерживать сильные импульсные нагрузки при включении электродвигателя в сеть;
  4. Высокие показатели надежности и долговечности;
  5. Точность в работе.
Популярные статьи  Почему в одной комнате перестали работать 4 из 6 розеток?

Но у такой системы есть определенные недостатки. В первую очередь – это низкий коэффициент мощности, который проявляется при глубоком регулировании производственных процессов. Компенсировать его можно при помощи дополнительных устройств. Кроме этого, мощный преобразователь вызывает помехи в электрической сети, что сказывается на работе чувствительного электро- и радиооборудования.

Конструкция:

  1. Трансформатор или реактор;
  2. Выпрямительные блоки;
  3. Дополнительный реактор, сглаживающий преобразование;
  4. Система защиты оборудования от перенапряжений.

Большинство современных преобразователей подключаются к трансформатору через реактор. Трансформатор в этой схеме является согласующим звеном между входящим и выходным напряжением, он уравновешивает разницу между ними. Помимо него, электросхема также включает в себя специальный сглаживающий реактор. Этот прибор необходим для нейтрализации определенных пульсаций, возникающих при выпрямлении и изменении типа тока. Но система не всегда включает в себя реактор, т. к. при достаточной индуктивности асинхронного двигателя в нем нет необходимости.

Агрегат пропускает через автономный инвертор (расположенный во входящем звене) первичную нагрузку. Они попадают в выпрямляющие блоки, установленные в выходном звене. Для подключения других индукционных потребителей используются специальные шины, которые помогают выравнивать питание в целой группе устройств.

Такой преобразователь бывает низкочастотный и высокочастотный. В зависимости от потребных частот и имеющихся параметров электричества подбирается нужная модель. Нужно отметить, что в станках, где используется трехфазный ток, применяется другой тип подключения. Однофазный переносит воздействия и преобразования, в то время как на преобразовании трехфазного тока теряется КПД.

Тиристорный электропривод
Фото — преобразовательный пункт

Система используется в плавке металлов, сварочных работах, контроле кранового механизма и многих других производственных и технологических процессах. Применение такого принципа работы позволяет реализовать систему генератор-двигатель без использования генератора. Благодаря этому производится широкая регулировка частот вращения шпинделя даже на самых малых скоростях, настраиваются механические и другие характеристики электропривода и прочие параметры.

Система генератор – двигатель и тиристорный преобразователь – двигатель

В начале 50 – х и конце 40 – х годов начали появляться электронные системы управления. Это дало возможность значительно улучшить электропривод постоянного тока. Одними из первых появились газозаполненные выпрямители – тиратроны. Они стали использоваться в качестве возбудителей в электроприводе постоянного тока (зачастую в системах генератор — двигатель). Появление таких устройств позволило применять замкнутые системы управления вместо разомкнутых. Однофазные электронно — вакуумные выпрямители применялись в электроприводах мощностью до 10 кВт.

В конце 50 –х начали появляться полупроводниковые элементы такие как тиристоры и диоды. Сначала их изготавливали маломощными и область их применения ограничивалась регулированием возбуждения, где они потихоньку вытесняли электронно – вакуумные приборы благодаря надежности, долговечности, уменьшению габаритов и увеличению производительности.

Но техника не стояла на месте и мощность полупроводниковых элементов постепенно росла. Через некоторое время они начали вытеснять электронно – вакуумные приборы и с якорных цепей электроприводов. Сперва кремниевые диоды начали применяться в регулируемых электроприводах постоянного тока с реакторами насыщения. Ниже показана функциональная схема:

Тиристорный электропривод

Такие системы более надежные чем системы генератор – двигатель и обеспечивают производительность повыше, чем система генератор – двигатель, но их стоимостные и габаритные показатели будут похуже системы генератор – двигатель.

В начале 1960 – х годов появились мощные тиристоры

После их появления машинные преобразователи потеряли всякий интерес проектировщиков, все их внимание сосредоточилось на проектировании электроприводов по системе тиристорный преобразователь – двигатель (ТП — Д). С тех пор и по сей день практически везде используют тиристорный электропривод

Тиристорный привод стал активно вытеснять систему генератор – двигатель, которая активно внедрялась в течении полувека. Структурная схема ТП – Д показана ниже:

Тиристорный электропривод

Электропривод с системой ТП – Д имеет следующие преимущества над системой Г – Д (генератор двигатель):

  • Тиристорный электропривод значительно снизил инерционность системы и повысил быстродействие работы установки, механизма;
  • Он довольно безотказен в работе и прост в эксплуатации;
  • КПД преобразователя не ниже 95%;
  • Малая масса и габаритные размеры, что позволяет уменьшить площадь, необходимую для расположения устройства;
  • Как правило имеет блочную компоновку тиристоров, что позволяет при выходе какого – то тиристора из строя быстро его заменить.

Тиристорный электропривод

Но имея достоинства она также имеет и недостатки:

  • На выходе преобразователя присутствуют пульсации тока и напряжения, что вызывает проблемы с коммутацией а также нагрев электродвигателя. Для улучшения энергетических показателей как правило требуется установка фильтров.
  • Довольно низкий коэффициент мощности при использовании глубокого регулировании скорости вращения двигателя. В системе Г – Д если используют в качестве приводной синхронную машины, то регулирования ее потока позволит сохранить высокий коэффициент мощности.
  • Перегрузочная способности ниже чем в Г – Д.
  • Напряжения питающей сети искажается, что в большинстве случаев приводит к установке дополнительных фильтров для улучшения гармонического состава сети.
  • При торможении электродвигателя при использовании Г – Д рекупирация энергии в сеть происходит естественно, то для ТП – Д необходимо применять специальные схемы включения, что ведет к дополнительным затратам.

Простое регулирование скорости электродвигателя вы можете посмотреть здесь:

Похожие материалы:

  • Тиристорный элемент как коммутатор однофазной силовой цепи
  • Новый DC/DC преобразователь потребляет всего 9 мкА
  • Древесина как преобразователь тепловой энергии в…
  • Система синхронного вращения со вспомогательными…
  • Что значит система промышленных интернет вещей IIoT…
Популярные статьи  Как в обычной розетке может появиться две фазы?

Описание и схема установки

Тиристорные возбудители экономичны, не сложны в эксплуатации и наладке. Выполнены в виде отдельно стоящего шкафа.

Ниже приведена схема и описание электронной установки с тиристорным управлением, из которой понятно из чего состоит прибор:

Конструкция прибора представляет:

  • Управляемый выпрямитель, обеспечивающий питанием обмотки возбуждения синхронного двигателя. Представляет блок тиристоров с системой импульсно-фазового управления.
  • Реактор, представляющий входной трансформатор.
  • Модуль гашения поля.
  • Система тестирования.
  • Блок измерения, контролирующий уровень тока на выходе напряжения возбудителя и тока статора.
  • Модуль защиты и блок сигнализации. Обеспечивает защиту индикации неисправности систем автоматического регулирования и диагностики.

Поставляется совместно с релейно-контактным узлом управления запуска двигателя. Имеет цифровую или аналоговую систему управления.

Тиристорный возбудитель позволяет:

  1. Подать напряжение на обмотки возбуждения в нерабочем состоянии электродвигателя, для тестового режима.
  2. В режиме прямого пуска подает напряжение на обмотки возбуждения, для поддержания функции тока статора, и тока скольжения.
  3. При реакторном пуске подача возбуждения после включения шунтирующего выключателя.
  4. Плавный (асинхронный) пуск с устройством высоковольтного плавного пуска.
  5. Обеспечивает синхронный запуск с применением высоковольтного частотного преобразователя.

Электронный возбудитель контролирует и поддерживает нормальную работу. При этом он обеспечивает безопасность оборудования, для чего нужен блок защиты:

  • Защищает выходные цепи при превышении тока возбуждения от первоначально установленной величины.
  • Производит защиту входных цепей при превышении сетевых токов предварительно заданный.
  • Повреждения изолирующего контура.
  • Аварийного отключения.
  • От ошибки чередования фаз.
  • Отсутствия силового напряжения.
  • Ошибки синхронизации двигателя с параметрами сети.
  • При аварийной ситуации электронного блока напряжения.
  • Длительного запуска, отличного от заданного. Длительность пуска задается программным путем. Время превышения пуска считается ошибкой.
  • Оповещение об асинхронном ходе.
  • От внешних аварийных ситуаций.
  • Производится защита от ошибок управления.

Если в комплектации возбудителя предусмотрена защита от снижения сопротивления изоляции внешнего контура, комплектуется дополнительно:

  • Узлом постоянного контроля параметров сопротивления изоляции с отображением на дисплее.
  • Наличием сухого контакта в случае уменьшения сопротивления изоляции, менее двух, постоянных значений, которые задаются наладчиками.

Наличие блока управления позволяет удерживать в пределах допуска напряжение в статоре, а также коэффициент производительности или возбуждения в автоматическом режиме. Характеристики задаются во время пуско-наладочных работ или дистанционно.

Внешний вид и внутренняя конструкция представлена на фото:

Оптимальное быстродействие

В системах регулирования скорости промышленного назначения не отмечается трудностей с разгоном, который легко реализуется при помощи системы реле и многоступенчатых реостатов. Когда начинается торможение, требуется вычислить момент начала подачи управляющих сигналов для снижения негативных эффектов.

Указанную задачу решает специальный блок, занимающийся оценкой текущего состояния системы. Опытным путём рассчитывается схема торможения, в управляющее устройство закладывается готовый алгоритм. При помощи датчиков определяется рассогласование между текущим состоянием и моментом начала торможения. Среди данных появляются величины – угловой путь вала до останова и прочие.

Обратная связь по скорости нелинейна и, как правило, не может быть рассчитана, данные об этой зависимости вводятся в память вычислителя. Как результат, согласно имеющейся нагрузке и динамическим показателям системы вырабатывается команда останова в нужный момент времени. Учитываются факторы:

  1. Отсутствие перегрева обмоток импульсом тока останова.
  2. Минимизация отдачи в сеть реактивной мощности.
  3. Продление срока эксплуатации установки.
  4. Отсутствие условий для создания аварий и механических перегрузок.

Тиристорный электропривод

В ходе разработки системы управления тиристорным регулятором учитывается факт невосприимчивости асинхронного двигателя к воздействующим факторам на низких оборотах. В этом случае требуется минимальное рассогласование по скорости между полями ротора и статора, обеспечивающими возникновение токов Фуко и, как следствие, наличие потокосцепления. Это существенное ограничение асинхронных двигателей, из-за которого их применение в быту сводится к минимуму.

Схема фазного управления двигателем

На рисунке представлена простейшая тиристорная схема для управления движением вала. Через ветки проходят импульсы обеих полярностей. При необходимости тиристор возможно запереть. В зависимости от совокупности управляющих сигналов изменяется порядок чередования фаз, что обеспечивает возможность реверсирования вала. Первая схема решает указанную задачу, вторая одновременно задаёт угол отсечки.

Безусловным плюсом такого технического решения считается возможность безболезненного отключения двигателя от сети на период торможения. Этим блокируется возврат энергии в сеть. Становится возможным режим противовключения. При открытых тиристорах 1 и 7 на одну обмотку приложены все напряжения. Как результат, образуется ощутимая постоянная составляющая. Продуцируемое ею магнитное поле служит интенсивному динамическому торможению вала, обусловленному потокосцеплением. Эта схема по-другому называется в литературе двухпульсным питанием в сети с изолированной нейтралью.

Интенсивность тормозящего магнитного поля регулируется введением в фазу А дополнительного резистора, не участвующего в работе, но только в останове. Одновременно тиристоры 9 и 10 полностью закрыты, току не остаётся другого пути. Это нужно, чтобы избежать перегрева и отдачи большого пика реактивной мощности в цепь. Управляющие цепи для упрощения на рисунке не показаны.

Тиристоры характеризуются конечным временем переключения, остаётся возможность создания ситуации, когда один ключ ещё работает, а второй уже включился. Что приведёт немедленно к межфазному короткому замыканию. В результате оба тиристора выйдут из строя из-за перегрева, ведь полупроводниковый p-n-переход теряет свойства необратимо в последнем случае. Кремниевые приборы предпочтительнее, выдерживают нагрев почти до 150 градусов Цельсия. Разумеется, силовые ключи снабжаются мощными радиаторами.

В этом плане режим отсечки тока, применяемый в современных схемах, смотрится намного более привлекательным, значительную часть периода ключ отдыхает. Если брать в рассмотрение компьютерные импульсные блоки питания, охлаждением занимается небольшой вентилятор. Без него размеры радиатора тиристорного ключа пришлось бы увеличить. В современных схемах повсеместно применяется широтно-импульсная модуляция, одним из методов реализации становится отсечка тока.

Чтобы тиристоры не срабатывали одновременно, полагается управляющие сигналы подавать с задержкой. Корректировка скорости на представленной схеме выполняется чередованием режимов питания и динамического торможения. Для коллекторных двигателей это излишне. Гораздо эффективнее менять угол отсечки для корректировки подаваемой мощности. Это одновременно сберегает потребляемую энергию, увеличивая КПД установки.

Популярные статьи  Подключение однофазного двигателя через конденсатор схема

Тиристорный электропривод

Непрерывный режим питания двигателя обеспечивается выработкой управляющих импульсов согласованно с переходом напряжения через нуль. Одна из возможных схем реализации упомянутой концепции представлена на рисунке. Её вариант показан для управления встречно включёнными тиристорами, чтобы избежать одновременного открытия ключей.

Тиристорный электропривод

Преобразователи частоты с непосредственной связью

ПЧ с непосредственной связью с питающей электросетью или циклоконверторы преобразуют напряжение частотой 50 Гц в переменное напряжение с регулируемой фазой и частотой. Электронные ключи таких устройств – управляемые и неуправляемые тиристоры, включенные по встречно-параллельным, мостовым, перекрестным и нулевым схемам.

Частота напряжения, поступающего на обмотки двигателя, изменяется путем циклического отпирания и запирания электронных ключей.

Элементная база тиристорных частотников стоит значительно дешевле силовых быстродействующих транзисторов. Преобразователи частоты такого типа:

  • Отличаются высоким к.п.д. Электрические потери уменьшаются за счет однократного преобразования напряжения.
  • Обеспечивают устойчивые механические характеристики двигателя на низких скоростях. Прямое преобразование позволяет выдавать на обмотки электродвигателя напряжение низкой частоты без уменьшения амплитуды. Жесткость механических характеристик привода на невысоких скоростях при этом не снижается.
  • Позволяют возвращать энергию в сеть при электродинамическом торможении двигателя. Частотники с гальванической связью с питающей сетью позволяют свободно обмениваться электроэнергий в генераторном режиме двигателя.

Мощность преобразователей с непосредственной связью практически не ограничена. Такие электроприводы можно легко модернизировать путем подключения дополнительных тиристорных модулей.

Устройства такого типа также имеют недостатки:

  • Несинусоидальное выходное напряжение. Гармоники вызывают дополнительный нагрев двигателя, шум при работе оборудования. Кроме того, паразитные составляющие поступают в сеть и ухудшают качество электроэнергии.
  • Сложность регулирования скорости двигателя выше номинальной. Непосредственные преобразователи способны изменять частоту только в меньшую сторону.

Относительная сложность схемы управления. Связь входной и выходной частоты определяется выражением f_(1 )=(m_n×f_2)/(2(n-1)+m_n ); где mn – пульсность напряжения, n – число участков синусоид в полуволне выходного напряжения, f_(1 )и f_(2 )– частоты на входе и выходе. Таким образом, для создания крутящего момента и сдвига фаз на 1200 относительно друг друга необходимо обеспечить строгую временную последовательность отпирания и запирания тиристоров.

Так, основная сфера применения преобразователей частоты с гальванической связью с электросетью – низкоскоростные приводы мощного оборудования, а также двигатели механизмов, работающих с частыми остановками, перезапусками и реверсами.

КРАНОВЫЕ ЭЛЕКТРОПРИВОДЫ С ТИРИСТОРНЫМИ ПРЕОБРАЗОВАТЕЛЯМИ ЧАСТОТЫ

Крановые электроприводы с НПЧ и ПЧИ применяются для механизмов с высокими требованиями к регулированию или производительности, в которых по условиям эксплуатации необходима или экономически оправдана целесообразность установки асинхронных короткозамкнутых двигателей. Электроприводы с НПЧ обеспечивают однозонное регулирование скорости и в зависимости от режима работы и требований к регулировочным показателям выполняются в системе с полюсно-переключаемыми (обычно двухскоростными) или односкоростными двигателями. Электроприводы с ПЧИ выполняются с односкоростными двигателями и обеспечивают двухзонное регулирование скорости. Применение НПЧ с полюсно-переключаемыми двигателями позволяет значительно увеличить мощность двигателя в тех же габаритах при одновременном увеличении диапазона регулирования скорости. В таких системах осуществляется комбинированное управление с частотным регулированием в области малых скоростей и переключением обмоток двигателя, а также переводом питания на напряжение сети в остальной зоне регулирования. В соответствии с этим в зависимости от функций, возлагаемых на НПЧ, применяются два варианта построения электропривода: с использованием НПЧ только для получения малых скоростей и с использованием НПЧ также в качестве бестокового коммутатора. В первом варианте целесообразно использование наиболее простых НПЧ типов ТТС-16 и ТТС-40, выполненных по нулевой схеме с программным управлением группами тиристоров, простой САР и с согласующим трансформатором. При этом, однако, значительно усложняется релейно-контакторная схема электропривода, выполняющая необходимые переключения в силовых цепях двигателя. Во втором варианте НПЧ должен быть рассчитан на полную мощность двигателя, усложняются также требования к схеме управления преобразователя и САР электропривода. Однако релейно-контакторная часть системы становится проще и надежнее. Для таких электроприводов используются НПЧ типа ТТС-100, выполненные по мостовой 18-тиристорной схеме с раздельным управлением группами тиристоров и токоограничивающими реакторами. Поскольку в настоящее время и в ближайшем будущем в краностроении будут широко применяться различные системы импульсно-ключевого регулирования, системы с тиристорными преобразователями постоянного тока и тиристорными преобразователями частоты непосредственного типа, в последующих параграфах книги рассматриваются именно эти системы электроприводов.

  • Назад
  • Вперёд

Типичная схема использования

В большинстве случаев схема применения тиристорного регулятора остаётся прежней, мало меняющейся с годами:

  1. Программные установки (ПУ) в виде кода закладываются в память арифметического устройства (АУ) электронного блока. В стиральной машине это самая дорогая часть. Настолько, что замена часто нецелесообразна.
  2. Тиристорный регулятор служит вводным устройством (ВУ), куда поступает управляющий сигнал.
  3. Изменённое напряжение воздействует на сервисный привод (СП), обмотки двигателя, коллектор и пр. Линия обратной связи показывает, что малая нестабильность компенсируется непосредственно без участия центрального процессора. Выше уже говорилось про величину искрения.
  4. Механизм (М) отрабатывает команды. На валу стоит централизованный датчик положения (ЦДП), по которому процессор понимает, что происходит в результате подачи команд. При необходимости алгоритм корректируется.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: