Ток перегрузки: что это такое, определение, защита

Содержание

Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.

Пример вычисления

Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.

Ток перегрузки: что это такое, определение, защита

Данные отображаются в фирменной табличке, какпоказано в иллюстрации.

Ток перегрузки: что это такое, определение, защита

Вычисления для 60 Гц

Ток перегрузки: что это такое, определение, защита

Коэффициент усиления напряжения определяется следующими уравнениями:

Ток перегрузки: что это такое, определение, защита

Расчет фактического тока полной нагрузки (I):

(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)

(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)

Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:

I для «треугольника»:

Ток перегрузки: что это такое, определение, защита

I для «звезды»:

Ток перегрузки: что это такое, определение, защита

Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.

Ток перегрузки: что это такое, определение, защита

Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке. Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке

Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

У вас уже есть такие классные функции, как защита от перенапряжения (overvoltage protection, OVP) и OTT. Каким образом использовать их для защиты от переходных процессов высокого напряжения?

Что можно ответить на это? Нет, нет и нет! Никогда так не делайте. Это глупая идея. Функции OVP и OTT (операционные усилители типа Over-The-Top имеют топологию входных каскадов, позволяющую им при замкнутой обратной связи работать с напряжениями, намного превышающими напряжение положительной шины питания) действительно позволяют входам такого компонента пережить напряжения, выходящие за пределы напряжений питания, с нулевой вероятностью повреждения. Полагаться на эти функции для защиты от переходных напряжений высокого напряжения — все равно что надеяться на резиновые сапоги при воздействии струи воды от мойки высокого давления Karcher. Резиновые сапоги предназначены для луж, которые меньше их высоты, так же как OVP и даже OTT пригодны лишь для напряжений ниже номинальных значений. Номинальное напряжение таких защитных решений составляет порядка максимум десятков вольт выше номинального напряжения шины питания, но они не помогут вам устоять против удара уровнем 8000 В.

Популярные статьи  Как перевести многотарифный счетчик нева мт 112 на один тариф?

Токовая перегрузка

Токовая перегрузка — это аварийный пожароопасный режим, при котором по элементу электросети проходит ток, превышающий номинальное значение, на которое рассчитан данный элемент (провод, кабель, устройство электрозащиты). В результате этого данный элемент электросети перегревается и в нем происходят различного рода изменения. Тепловые эффекты, сопровождающие этот режим и соответствующие повреждения элементов электроустановок, различаются в зависимости от кратности тока перегрузки, которая равна отношению величины рабочего тока к номинальному или длительно допустимому. Например, при перегрузках с кратностью не более двух в элементах электросети за короткое время не возникают заметные термические повреждения. Однако при длительной работе в этих же условиях происходит перегрев проводников или токопроводящих деталей, постепенное разрушение их изоляции со значительным снижением ее изоляционных свойств. Так, при температуре нагрева проводников выше 65оС изоляция проводов высыхает и с течением некоторого времени теряет свою эластичность, в ней появляются трещины, приводящие к заметному снижению сопротивления изолирующего покрова жил и появлению токов утечки. При более высоких перегрузках за сравнительно короткое время могут произойти размягчение и деформация изоляционных покровов и даже металла жил проводов и токоведущих деталей. Как правило, после разрушения изоляции возникает короткое замыкание с характерными для него пожароопасными факторами. Наряду с этим следует иметь в виду, что при перегрузке изолированного электропровода реализуется специфический способ нагревания изоляции и особый источник зажигания. Нагрев изоляции происходит одновременно по всей поверхности, которая контактирует с токопроводящей жилой, и сопровождается интенсивным образованием горючей смеси продуктов пиролиза с воздухом. Этот процесс при условии неотключения источника электропитания может продолжаться до полного разрушения проводника, которое произойдет, например, при достижении токоведущей жилой температуры плавления металла. Разрушение электропроводника может произойти по другому механизму, когда, например, ослабнет при температуре, близкой к температуре плавления металл проводника, свободно висящего на элементах конструкций, и проводник разрушится под действием собственного веса. Характерно, что при достижении этого момента произойдет разрыв жилы, сопровождающийся искровым разрядом, независимо от того, питается ли цепь от источника постоянного или переменного тока. Этот разряд является эффективным источником зажигания образовавшейся горючей смеси. При еще больших кратностях токов перегрузки источниками зажигания могут явиться нагретые до высокой температуры токопроводящие жилы и другие детали. Следует также учитывать, что процесс прогрева и пиролиза изоляции происходит на всем протяжении токоведущей жилы, и поэтому возгорание может произойти на одном или даже нескольких наиболее теплонапряженных участках линии. Подобным тонкостям обучают на специализированных курсах, а к работе сотрудники допускаются только после аттестации промышленной безопасности. Электросопротивление в местах перехода электрического тока с одной контактной поверхности на другую через площадки действительного их соприкосновения также обусловливает локальный нагрев металла токопроводящих деталей и прилегающих материалов вплоть до появления источников зажигания. И чем большей будет токовая нагрузка, тем более интенсивным окажется разогрев контактного соединения, поскольку тепловая мощность прямо пропорциональна квадрату силы тока. Особенно опасно проявление эффекта нагрева контактных соединений в режиме затяжного короткого замыкания, при котором сила тока может превышать рабочий ток в сотни раз. Нередко это приводит к появлению вторичных очагов возгорания – не только в месте короткого замыкания, но и на других участках, в местах, где оказываются при этом под токовой нагрузкой плохие контакты.

Нагревание и возгорание при токовой перегрузке. Пиролиз изоляции

Наряду с этим следует иметь в виду, что при перегрузке изолированного электропровода реализуется специфический способ нагревания изоляции и особый источник зажигания. Нагрев изоляции происходит одновременно по всей поверхности, которая контактирует с токопроводящей жилой, и сопровождается интенсивным образованием горючей смеси продуктов пиролиза с воздухом. Этот процесс при условии неотключения источника электропитания может продолжаться до полного разрушения проводника, которое произойдет, например, при достижении токоведущей жилой температуры плавления металла. Разрушение электропроводника может произойти по другому механизму, когда, например, ослабнет при температуре, близкой к температуре плавления металл проводника, свободно висящего на элементах конструкций, и проводник разрушится под действием собственного веса. Характерно, что при достижении этого момента произойдет разрыв жилы, сопровождающийся искровым разрядом, независимо от того, питается ли цепь от источника постоянного или переменного тока. Этот разряд является эффективным источником зажигания образовавшейся горючей смеси. При еще больших кратностях токов перегрузки источниками зажигания могут явиться нагретые до высокой температуры токопроводящие жилы и другие детали.

Следует также учитывать, что процесс прогрева и пиролиза изоляции происходит на всем протяжении токоведущей жилы, и поэтому возгорание может произойти на одном или даже нескольких наиболее теплонапряженных участках линии. Подобным тонкостям обучают на специализированных курсах, а к работе сотрудники допускаются только после аттестации промышленной безопасности.

Электросопротивление в местах перехода электрического тока с одной контактной поверхности на другую через площадки действительного их соприкосновения также обусловливает локальный нагрев металла токопроводящих деталей и прилегающих материалов вплоть до появления источников зажигания. И чем большей будет токовая нагрузка, тем более интенсивным окажется разогрев контактного соединения, поскольку тепловая мощность прямо пропорциональна квадрату силы тока. Особенно опасно проявление эффекта нагрева контактных соединений в режиме затяжного короткого замыкания, при котором сила тока может превышать рабочий ток в сотни раз. Нередко это приводит к появлению вторичных очагов возгорания не только в месте короткого замыкания, но и на других участках, в местах, где оказываются при этом под токовой нагрузкой плохие контакты.

Перегрузка сети

Это тоже аварийный режим работы. Все электрооборудование рассчитано на номинальный ток, превышение которого недопустимо. Иначе контактные системы коммутационных аппаратов, жилы кабелей и проводов начинают нагреваться. Перегрев приводит к расплавлению или обугливанию изоляции, которое вскоре приводит к пожару или короткому замыканию.

Последствия перегрузки

Причинами перегрузки является:

  • подключение нагрузки к групповой линии, превышающей ту, на которую рассчитан ее кабель и автоматический выключатель. Это либо связано с подключением мощного электроприемника или превышением суммарной мощности группы электроприемников.
  • неисправности, возникающие в одном из электроприемников. Например, витковое замыкание в электродвигателе, частичный выход из строя нагревательного элемента в калорифере.
Популярные статьи  Размещение светильников в помещении при расчете освещения

Оцените качество статьи:

Контроль температуры нагрева электрических двигателей

Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток. Переход на более высокий класс изоляции электродвигателя может быть осуществлен только при капитальном ремонте.

Внимание. Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции

Температурой окружающего воздуха, при которой электродвигатель может работать с номинальной мощностью, считается 40 °С. При повышении температуры окружающего воздуха выше 40 °С нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений. Предельные допустимые превышения температуры активных частей электродвигателей и при температуре окружающей среды 40 °С не должна превышать:

— 65 °С — для изоляции класса А;

— 80 °С — для изоляции класса Е;

— 90 °С — для изоляции класс В;

— 110 °С — для изоляции класса Г;

— 135 °С — для изоляции класса Н.

У асинхронных двигателей с уменьшением напряжения питающей сети уменьшается мощность на валу двигателя. Кроме того снижение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток.

Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, и увеличивается нагрев статора за счет вихревых токов.

Внимание. Независимо от снижения температуры окружающего воздуха увеличивать токовые нагрузки более чем на 10% от номинального не допускается

Действие короткого замыкания на электрооборудование

Короткое замыкание – аварийный режим работы для электрической сети. При возникновении он оказывает на электрооборудование одновременно два действия:

  • электродинамическое;
  • термическое.

Согласно законам физики, при прохождении тока по двум проводникам, расположенным рядом, они взаимодействуют друг с другом. В зависимости от направления тока они либо притягиваются, либо отталкиваются. С увеличением тока и уменьшением расстояния сила взаимодействия увеличивается.

На этом принципе и происходит электродинамическое воздействие тока КЗ на шины, провода, обмотки электрических машин. На подстанциях и других энергообъектах, где значения токов замыкания достигают десятков и сотен тысяч ампер, после КЗ оборудование может прийти в полную негодность из-за механических разрушений. При этом само КЗ может произойти где-то в стороне.

Термическое воздействие основано на нагревании проводников при прохождении по ним электрического тока. При этом температура иногда повышается настолько, что провода или шины расплавляются.

В бытовых условиях ярче выражено термическое воздействие КЗ, динамическое можно не учитывать из-за небольших значений токов.

Перегрузка по току

Токами повреждения называются токи коллектора (или стока), превышающие пределы, заданные для определенных условий эксплуатации, вследствие ошибки схемы управления или повреждения нагрузки. Отказ полупроводниковых ключей в этом случае может быть обусловлен следующими механизмами:

  • тепловое повреждение вследствие повышения мощности рассеяния и перегрева;
  • динамический пробой;
  • статическое или динамическое защелкивание;
  • перенапряжение при отключении аварийного тока.

Токовые перегрузки, причиной которых являются сбои в алгоритме управления или падение нагрузки, характеризуются следующими факторами:

  • относительно низкая скорость изменения di/dt (зависящая от индуктивности нагрузки и управляющего напряжения);
  • повреждающий ток протекает по DC-шине;
  • транзистор не выходит из насыщения.

Короткое замыкание (КЗ) вследствие пробоя одного из ключей полумоста (case 1 на рис. 1) или замыкания цепи нагрузки (например, из-за повреждения изоляции, case 2 на рис. 1) характеризуется следующими факторами:

  • очень высокая скорость изменения тока di/dt;
  • повреждающий ток протекает по DC-шине;
  • транзистор выходит из насыщения.

Токи замыкания на землю, которые могут быть вызваны пробоем изоляции (case 3 на рис. 1), характеризуются следующими факторами:

  • скорость изменения тока di/dt зависит от индуктивности цепи заземления и рабочего напряжения;
  • повреждающий ток не замыкается по DC-шине;
  • выход транзистора из насыщения зависит от величины аварийного тока.

Рис. 1. Причины возникновения короткого замыкания

Явления, вызываемые сверхтоками

Протекание экстремальной силы тока вызывает следующие неблагоприятные явления:

  1. Тепловой перегрев повреждает изоляцию проводников и рабочие компоненты, становится причиной возгораний. Развитие этого явления блокируется установкой аппарата защитыпо току с быстродействием ≤ 0,005 с.
  2. Электродинамическая сила деформирует и разрушает токопроводящие компоненты, вызывая поломку коммутационного аппарата. Способом борьбы является подбор комплектующих с повышенной электродинамической стойкостью и правильная компоновка деталей, исключающая взаимное ЭМ-влияние.
  3. Магнитное поле отрицательно влияет на работу измерительных приборов, компьютеров и прочей прецизионной техники. Воздействие поля минимизируется применением экранов из магнито-мягких сплавов (пермаллой, феррит).

Выбор защиты для электродвигателя

Защиты для двигателей выбирают в зависимости от мощности, условий и режимов работы, наличию или отсутствию электротехнического персонала, особенностей нагрузки и других факторов.

Максимальная токовая защита от сверхтоков коротких замыканий требуется всем электроприводам.

Для приводов ответственного оборудования, а также установок, работающих в сложных условиях, при динамических нагрузках требуется защита предохранителем или автоматическим выключателем, встроенным тепловым выключателем.

Электроприводы мощностью до 1,1 кВт, работающие при постоянном присутствии квалифицированного персонала, защищают тепловыми реле и предохранителями.

Тепловая и токовая защита двигателей более 1,1 кВт, работающих в отсутствии электротехнического персонала, дополнительно комплектуется фоточувствительным устройством.

Выбор защит осуществляется на основании анализа условий электросети, режимов работы двигателей, особенностей нагрузки и характеристик защитных аппаратов.

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111

Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Популярные статьи  Тормозные режимы работы двигателя с последовательным возбуждением

Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

Принцип работы газовой защиты

В типовой защите силового трансформатора вы сможете найти газовое реле. Реле состоит из двух отделений, которые выполняют разнообразные функции. Первая камера будет служить для контроля нагнетающего газа из масла. Ее необходимо установить возле расширительного бака. Когда масло дойдет до определенного уровня, тогда бак начнет его выпускать в определенных количествах. В этой ситуации сигнализатором будет служить специальный поплавок.

Ток перегрузки: что это такое, определение, защита

Индикатор не всегда будет показывать уровень масла. Иногда это устройство будет контролировать проходимость газов диагностируя работу трансформатора. Настроить правильную работу этого реле сможет специальный работник. Второе отделение устройства будет подключено к контуру трансформатора и будет его соединять, открывая путь для поднимающегося газа.

Мембрана в расширительном баке будет выступать в качестве индикатора изменения давления. Если давление повысится, тогда этот процесс сожмет мембрану и диафрагма начнет двигаться. Также движение может происходить в результате изменения атмосферного давления. В результате этого процесса трансформатор прекратит свою работу. Мембрана газового реле – это нежная антикоррозийная деталь, которая может перестать работать корректно при малейшем повреждении.

Проверка работоспособности расцепителей

Проверка работоспособности включает следующие действия:

Визуальный осмотр выключателя. На корпусе девайса не должно быть механических повреждений: сколов и трещин

Обращать внимание на плотность прилегания частей, качество креплений и зажимов. Сделать несколько пробных манипуляций по «включению выключению» вручную

Во включенном положении аппарат должен со щелчком фиксироваться и затем свободно выключаться.
Прогрузка аппарата. Испытание заключается в определении времени срабатывания расцепителя при подаче электропитания с регулируемой силой тока на специальном стенде. Полученный результат сравнивается с типовой времятоковой характеристикой модели АВ.

Современный рынок электротехнического оборудования предлагает потребителю широкий спектр расцепителей. Этими устройствамикомплектуются аппараты 1-3 фазного переменного AС и постоянного тока DС и напряжением до 1000 В.

Откуда мы знаем, от чего защищаться?

Хотя мы понимаем, что необходимо предохранить систему от электрических перенапряжений, термин «защита» слишком широк, чтобы быть полезным, когда речь идет о принятии решения о том, как именно требуется защитить нашу систему. Вот почему сотрудники МЭК (Международная электротехническая комиссия — международная некоммерческая организация по стандартизации в области электрических, электронных и смежных технологий) и многих других организаций проделали весьма непростую работу, чтобы выяснить, с какими типами электрических перенапряжений мы можем столкнуться в реальной жизни и каковы их параметры, определяющие воздействия. Мы сконцентрируемся на стандартах МЭК, поскольку они охватывают приложения для самого широкого рынка РЭА, а сложность их понимания послужила причиной написания данной статьи.

Рис. 1. Форма разрядного тока испытательного генератора (контактный разряд, испытательное напряжение 8 кВ)

В таблице 1 приведены три базовых стандарта, которые определяют, с какими типами электрических перенапряжений может столкнуться система. И хотя в данной статье подробно будет обсуждаться проблема защиты от разряда статического электричества, мы должны иметь определенное понятие и знания по таким вызывающим перенапряжения воздействиям, как электрические быстрые переходные процессы (electrical fast transient, EFT) и короткие скачки (выбросы) напряжения.

Рис. 2. Электрические быстрые переходные напряжения уровня 4, соответствующие стандарту IEC-61000-4-4 (ГОСТ IEC 61000-4-4-2016)

Таблица 1. Технические стандарты МЭК и их аналоги

Стандарт/

ГОСТ Р

Наименование стандарта

Источник воздействия

Источник воздействия Характеристика воздействия

МЭК

ГОСТ Р

IEC 61000­4­2/

ГОСТ 30804.4.2­2013

Electromagnetic compatibility (EMC).

Part 4­2: Testing and measurement techniques.

Electrostatic discharge immunity test

Совместимость технических средств электромагнитная. Устойчивость к электростатическим разрядам.

Требования и методы испытаний (с поправкой)

Электростатический разряд

Одиночное воздействие импульса

очень высокого напряжения,

сверхмалой длительности

IEC 61000­4­4 /

ГОСТ IEC 61000­4­4­2016

Electromagnetic compatibility (EMC).

Part 4­4: Testing and measurement techniques.

Electrical fast transient/burst immunity test, IDT

Электромагнитная совместимость (ЭМС).

Часть 4­4. Методы испытаний и измерений.

Испытание на устойчивость к электрическим

быстрым переходным процессам (пачкам)

Внешние коммутирующие

компоненты (например, броски ЭДС

самоиндукции от двигателей)

Повторяющиеся воздействия

коротких импульсов

высокого напряжения

IEC 61000­4­5/

ГОСТ IEC 61000­4­5­2017

Electromagnetic compatibility (EMC).

Part 4­5: Testing and measurement techniques.

Surge immunity test, IDT

Электромагнитная совместимость (ЭМС).

 Часть 4­5. Методы испытаний и измерений.

Испытание на устойчивость

к выбросу напряжения

Удары молний, переходные процессы

в энергосистеме (например,

от повышающих преобразователей)

Импульсы высокого напряжения,

относительно большой

длительности

Рис. 3. Нормализованный выброс тока (8/20 мкс) согласно IEC-61000-4-5

На рис. 1–3 показаны примеры форм воздействующих импульсов перенапряжения, установленные стандартами, приведенными в таблице 1. А на рис. 4 представлена упрощенная схема испытательного генератора, используемого в соответствии со стандартом IEC‑61000–4­2, и ее практическое применение.

Рис. 4. Упрощенная схема испытательного генератора, используемого в соответствие стандарта IEC-61000-4-2, и ее практическое применение

Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя — он просто устанавливается в исходное положение.

Ток перегрузки: что это такое, определение, защита

Различают два вида автоматических выключателей: тепловые и магнитные.

Тепловые автоматические выключатели

Тепловые автоматические выключатели — это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.

Магнитные автоматические выключатели

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.

Ток перегрузки: что это такое, определение, защита

Рабочий диапазон автоматического выключателя

Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: