Вибрация и пляска проводов на воздушных лэп

Устройство

Типовой виброгаситель состоит из следующих элементов:

  1. Демпферный элемент. Отрезок 19-жильного стального каната. Жилы каната изготавливаются по специальной технологии, имеют определенный шаг навивки и диаметр для достижения требуемой диссипации и относительной жесткости.
  2. Грузы. Две единицы с шарообразными наконечниками. Тип и форма грузов определяются конструкцией виброгасителя и его назначением. Грузы должны свободно разворачиваться вокруг вертикали на пропорционально равный угол. Расчет энергопоглощения выполняется с учетом собственной частоты колебания грузов.
  3. Зажим, состоящий из прижимной плашки и корпуса с крюком на конце. Радиус петли крюка должен соответствовать внешнему сечению обслуживаемых линий. Расчет радиуса выполняется по формуле Р=(175±5)°, с учетом длины окружности и угла поворота вокруг оси. Корпус зажима литой или прессованный (с последующей зашлифовкой пескоструем).

Торговый дом «МСК» предлагает многочастотные виброгасители для воздушных линий связи всех типов. Мы подберем оптимальное оборудование с учетом технических характеристик и особенностей монтажа линий, поможем с отправкой в ваш город.

Физика процесса

Во время пляски в местах подвешивания к опоре линия крепится жестко, поэтому в таких узлах не возникает никаких колебаний. А в местах провеса проводов амплитуда колебаний становиться максимальной.

Рис. 3: функция колебания проводов в пролете

При достижении максимума пляски в пиковой точке провиса возникает, так называемая, стоячая волна. Данное явление характеризуется величиной амплитуды кратной или равной длине пролета. Наиболее опасные перемещения возникают на скоростях в 0,6 – 0,8 м/с, а при нарастании скорости воздушного потока более 5 – 8 м/с динамические нагрузки слишком малы из-за незначительной амплитуды.

Но, помимо амплитуды вибрации вторым по значимости параметром является их частота, которую можно определить по формуле:

f = (0,185×V)/d, где

  • f – это частота колебаний;
  • 0,185 – постоянная Струхаля;
  • V – скорость аэродинамического потока;
  •  d – диаметр провода.

Как видите из формулы, чем меньшего сечения торсы применяются в ЛЭП, тем с большей частотой они будут колебаться. На практике,  частота колебаний обуславливает и интенсивность пляски, из-за чего диапазон наиболее опасных частот для линии составляет от 0,2 до 2 Гц.

Следует отметить, что ситуация может значительно ухудшаться за счет погодных факторов, которые влияют не только на воздушные потоки, но и на состояние провода. Наиболее значимым из них является гололед, так как он возникает с подветренной стороны и характеризуется искажением формы провода. При этом вибрирующие провода подвергаются воздействию поднимающей силы Vy, приложенной к отложениям гололеда. Она дополнительно усугубляет ситуацию при вибрации и пляске.

Рис. 4: влияние гололеда на колебания

Провод совершает не только горизонтальные колебания, но и вращательные движения, а в узлах и точках фиксации из-за обледенения происходит повреждение металла.

Это интересно: Как провести электричество на участок в 2019 году и сколько это стоит

2.1. Причины возникновения, характеристики пляски

2.1.1. Пляской проводов с односторонними либо с асимметричными отложениями различной плотности (гололед, мокрый снег, смесь, изморозь) называются вызываемые ветром устойчивые периодические низкочастотные колебания натянутого в пролете ВЛ провода, образующие стоячие волны с числом полуволн от одной до двадцати.

2.1.2. Наиболее опасными и наиболее часто встречающимися являются случаи пляски с 1, 2 и 3 полуволнами колебаний. Размах пляски 2А (удвоенная амплитуда колебаний или перемещение провода от крайней нижней точки движения до крайней верхней, называемое амплитудой «пик-пик») наибольших значений достигает при колебаниях с одной полуволной в пролете. В пролетах небольшой длины (до 150 м) размах однополуволновых колебаний в пучности может превышать по значению стрелу провеса провода и достигать 4 — 6 м (рис. , а). В пролетах большой длины размах однополуволновой пляски может достигать стрелы провеса, но обычно не превышает 6-10 м (рис. , б). Пляска с двумя полуволнами (рис. , а) чаще всего происходит с амплитудами «пик-пик» 1,5 — 3 м, однако есть данные о колебаниях с размахом до 4 — 6 м. Размах пляски с тремя полуволнами (рис. , б) по имеющимся данным не превосходит 4 м. Реже встречаются случаи менее опасной многополуволновой пляски с четырьмя и более полуволнами в пролетах ВЛ.

Рис. 1. Пляска с одной полуволной в пролете:

а

— малой длины;б — большой длины

Рис. 2. Многополуволновые формы пляски в пролете:

а

— две полуволны;б — три полуволны

2.1.3. Характерный диапазон частот колебания проводов при пляске 0,2 — 1 Гц. Частота колебаний при пляске с определенным числом полуволн зависит от тяжения провода, погонной массы провода с гребешком осадка, длины пролета, конструкции пролета (анкерный, промежуточный и т.д.) и скорости ветра.

2.1.4. Пляска является результатом воздействия на провод периодически изменяющейся подъемной силы, возникающей при его обтекании равномерным и поперечно направленным воздушным потоком скоростью от 6 до 25 м/с. Значения и направления подъемной силы и аэродинамического крутящего момента зависят от угла атаки воздушного потока по отношению к профилю гололеда . Как вертикальные, так и крутильные колебания провода вызывают изменение угла атаки, которые, синхронизируясь с одной из низших собственных частот провода в пролете, является причиной развития пляски (рис. , ).

Рис. 3. Угол атаки неподвижно закрепленного провода с гололедом, имеющим толщину стенки h

Рис. 4. Изменение углов атаки провода с гололедом, движущегося со скоростью V

в поперечном воздушном потоке

2.1.5. Отложения на проводах в виде мокрого снега появляются при температурах воздуха от +2 до -2 °С. Гололед образуется при выпадении переохлажденного дождя или при переохлажденном тумане при температурах от 0 до -5 °С. Изморозь образуется на проводах при температурах воздуха от -3 до -15 °С. Известны также случаи пляски проводов в северных районах при температурах ниже -30 °С, причиной которых, очевидно, является образование сублимационной изморози.

Пляска может возникать при отложении тонкого слоя гололеда, малозаметного с земли. Наиболее характерными для отечественных энергосистем являются случаи пляски с отложениями гололеда толщиной от 3 до 20 мм.

Как правило, образование отложений на проводах сочетается с действием ветра. Однако в процессе формирования отложений или после его завершения скорость и направление ветра могут меняться, вызывая усиление, ослабление или прекращение пляски.

2.1.6. Благоприятными для развития интенсивной пляски являются ровная открытая местность и вершины холмов. Пляске подвержены также линии, проходящие по гребням невысоких горных хребтов, и участки линий, пересекающие горные долины. Закрытые для действия ветра участки трасс ВЛ (высокая застройка, лес, сильно изрезанный рельеф местности) являются препятствиями для пляски.

Популярные статьи  Будет ли работать моя схема для запитки дома: генератор + конвектор?

2.1.7. Пляске подвержены провода практически любой конструкции и любого диаметра. Исключение составляют лишь провода марки Т-2, выпускаемые фирмой Кайзер Алюминиум (США), представляющие собой два провода одинакового диаметра, скрученные с определенным шагом [].

Провода расщепленных фаз в большей мере подвержены пляске, чем одиночные, поскольку наличие внутрифазовых дистанционных распорок способствует увеличению эксцентричности гололедного отложения. Кроме того, провода, расщепленные на три составляющие и более, имеют близкие значения частот одинаковых форм вертикальных и крутильных колебаний, что увеличивает вероятность интенсивной пляски.

Опасность

Пляска и вибрация имеют схожую природу, но отличаются по интенсивности. Тем не менее, оба явления могут нести такие виды опасности для ЛЭП:

  • Распушивание — повреждение проводов, при котором медные, алюминиевые или стальные тросы теряют утяжку и механическую прочность;
  • Перекрытие воздушного промежутка – в случае движения смежных фаз с различной амплитудой, волны могут приближаться достаточно близко друг к другу, из-за чего произойдет пробой и возникновение дуги;
  • Схлестывание проводов – являются более опасным развитием предыдущей ситуации, когда параллельные линии касаются друг друга и создают электрический контакт с протеканием токов короткого замыкания и оплавлением металла;
  • Обрыв проводов – может возникать как результат короткого замыкания, так и множественных обрывов отдельных проволок, разрушенных многократными вибрациями или пляской.

Как видите, все потенциальные опасности могут запросто привести к нарушению нормального электроснабжения и материальным затратам на восстановление. Также не забывайте, что любая аварийная ситуация потенциально несет угрозу человеку, как выполняющему работу в электроустановках, так и находящемуся поблизости. Поэтому для предотвращения опасных воздействий разработаны методы борьбы с вибрацией и пляской, направленные на гашение колебаний.

Универсализация гасителей

Провода, которые используются на российских линиях электропередач, могут повреждаться при возникновении вибраций с частотой колебаний от четырех до ста пятидесяти Гц.

Чтобы не допустить возникновение резонанса во всём этом довольно широком диапазоне, были созданы гасители приблизительно семидесяти разных типов. Такое чрезмерное изобилие делало эксплуатацию линии электропередачи сложной и дорогой.

Для решения этой серьёзной проблемы в последние годы в гасителях начали использовать эксцентричные грузы. В результате каждое такое устройство стало способно работать с девятью различными частотами колебаний. Чтобы полностью закрыть весь опасный диапазон, ныне достаточно использовать всего пять типов многочастотных гасителей.

Междуфазные распорки

Междуфазные распорки предполагают установку изолирующих связующих элементов между проводами в пролете (рис. 1а). Наличие таких связей не устраняет пляски, но может приводить к синхронным колебаниям всех проводов как единой колебательной системы. Возможность междуфазных замыканий практически исключается. Это предложение может рассматриваться как одна из реальных мер борьбы с пляской, однако необходимо провести детальные исследования для оценки необходимого количества и мест установки распорок в пролете, а также для установления достаточности прочности существующих конструкций опор для восприятия увеличенных динамических нагрузок.

Представленные способы борьбы с пляской проводов, за исключением установки междуфазных распорок, носят пассивный характер, не направлены непосредственно на подавление колебательного процесса, и их реализация связана с существенным удорожанием линии.

  • 17.Апр.2015 — Передача электроэнергии между странами — оценка целесообразности
  • 17.Апр.2015 — Статический тиристорный компенсатор на основе УШРТ — часть 2
  • 17.Апр.2015 — Статический тиристорный компенсатор на основе УШРТ — часть 1
  • 17.Апр.2015 — Расчета смещений проводников при КЗ
  • 16.Апр.2015 — Применение мощных электроприводов для насосов и компрессоров (от 1 до 80 кВт)

Монтаж гасителей пляски

Расстановка воздушных сполеров в полете ВЛ выполняется в соответствии с Ведомостью Гасителей пляски, разработанной производителем для линии, на которой будут устанавливаться Воздушные спойлеры.

1.1. В соответствии Ведомостью Гасителей Пляски определить место расположения Воздушного спойлера в пролете ВЛ.

1.2. При наличии крупных загрязнений очистить участок провода, на котором будет установлен Воздушный спойлер, металлической щеткой.

1.3. Накинуть на провод «Поддерживающий виток» и плавно сдвинуть спойлер к месту его установки.

1.4. Навить на провод крепёжную секцию, противоположную от крепежного витка.

1.5. При навивке крайних витков крепежной секции допускается применение шлицевой отвертки.

1.6. Перейти к противоположному концу Воздушного спойлера.

1.7. Придерживая Воздушный сполер за крепежную секцию, скинуть «Поддерживающий виток» с провода.

1.8. Навить на провод спойлерную секцию, два (или три, в зависимости от

диаметра провода) витка в направлении правого повива.

1.9. Навить вторую крепёжную секцию.

Меры безопасности

Не модифицируйте данный продукт, ни при каких обстоятельствах – это может привести к неправильной работе.

Воздушные спойлеры предназначены только для однократной установки – повторный монтаж Воздушных спойлеров запрещен.

Источник

МЕРЫ БОРЬБЫ С ГОЛОЛЕДОМ И ВИБРАЦИЕЙ ПРОВОДОВ И ТРОСОВ

Предыдущая77Следующая

Под гололедом понимаются твердые атмосферные осадки в виде чистого льда с плотностью 0,6—0,9 г/см3, изморози — кристаллического осадка с плотностью 0,1—0,2 г/см3, мокрого снега и смеси этих осадков. Наиболее часто гололед на проводах и тросах наблюдается при температуре воздуха, близкой к 0°С, когда оттепели сменяются похолоданием.

Для предупреждения аварий и повреждений ВЛ от гололеда в районах с сильным гололедообразованием организуют наблюдения за изменением метереологических уело-

Рис. 12.7. Схемы плавки гололеда:

а-в-

током КЗ;г — по способу встречного включения фаз;д- постоянным то-

КОМ

вий, а на ответственных ВЛ устанавливают приборы, сигнализирующие о нарастании гололеда.

Основной мерой борьбы с гололедом является удаление его с проводов и тросов путем плавки электрическим током, а также профилактический нагрев проводов (увеличением тока нагрузки) до температур, при которой образование гололеда на проводах не происходит. Применяется несколько способов плавки гололеда на ВЛ (рис. 12.7): током КЗ, постоянным током от специального источника, током нагрузки. Для плавки гололеда на грозозащитных тросах последние подвешивают на изоляторах. Плавку гололеда на ВЛ организуют диспетчерские службы энергосистем. Начинать плавку целесообразно, когда размеры гололеда еще невелики, но нарастание его продолжается. Успех плавки зависит от быстроты и оперативности ее организации. Для этого заранее рассчитывают токи и время плавки, подготавливают специальные перемычки, устанавливают необходимые выключатели, разъединители и т. д.

Вибрация проводов и тросов.При ветре, направленном поперек линии, за проводами (тросами) возникают и срываются воздушные вихри. Эти вихри вызывают силы, действующие на провод то снизу, то сверху. Совпадение частоты образования вихрей с частотой колебания натянутых проводов приводит к появлению на линии стоячих волн вибрации с амплитудой колебаний в несколько сантиметров. Вибрация наблюдается при скорости ветра 0,5—10 м/с.

Популярные статьи  Измерение сопротивления заземляющего устройства

В результате вибрации провода и тросы испытывают знакопеременные напряжения, приводящие в конечном счете к излому и обрыву отдельных жил в тех местах, где они соприкасаются с зажимами.

Типовой защитой от вибрации является оснащение ВЛ 35 кВ и выше гасителями вибрации (рис. 12.8). Гасители вибрации подвешиваются вблизи зажимов в каждом пролете провода или троса.

Пляска проводов итросов. Помимо вибрации на ряде ВЛ наблюдается явление, получившее название пляски проводов. Это один из видов автоколебаний, при котором имеет место резонанс собственных колебаний провода и возбуждающей силы. В наибольшей степени пляске подвержены провода ВЛ, расположенных в гололедных районах, поскольку отложения гололеда изменяют профиль провода (при одностороннем гололеде сечение становится похожим на крыло) и при наличии ветра возникает сила, поднимающая провод вверх. В результате возникают периодические вертикальные колебания провода с амплитудой, достигающей в некоторых случаях нормального провеса провода. Разработан ряд мероприятий по борьбе с пляской проводов и тросов, среди которых может быть названо применение механических устройств, ограничивающих перемещение проводов при пляске, например кольцевых тросовых

Вибрация и пляска проводов на воздушных лэп

Рис. 12.8. Гаситель вибрации:

а

— обший вид;6 — разрез; / — зажим для крепления к проводу; 2 — груз;3 — стальной трос

распорок между расщепленными проводами фазы, а также гасителей пляски в виде различного рода цилиндрических и плоских обтекателей, подвешиваемых на проводах.

Своевременная плавка гололедных образований снижает вероятность возникновения пляски проводов и тросов.

Предыдущая77Следующая

Дата добавления: 2016-06-29; просмотров: 6042; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Причины возникновения

Все причины возникновения и пляски, и вибрации можно разделить на:

  • воздействие воздушного потока – наиболее частая и опасная причина, поскольку имеет продолжительное воздействие и приводит к нарастанию амплитуды и частоты;
  • коммутационные процессы – при подаче напряжения в сеть или при подключении нагрузки переходные процессы обуславливают скачек электромагнитного поля, приводящего провода в движение;
  • механическая нагрузка – обуславливается всевозможными ударами или движением предметов, к примеру, токоприемником электроподвижного состава по контактной сети.

Следует отметить, что движение линий во время переходного процесса носит разовый характер, и дальнейшие собственные колебания постепенно угасают. То же происходит и с механической нагрузкой, в отличии от воздуха, который не только может дуть в течении продолжительного времени, но и менять свой угол и интенсивность. Поэтому наиболее значимой причиной для всех типов линий является воздушный поток.

Возникновение вибрации и пляски от воздушного потока

Воздействие ветра происходит при любом направлении потока, как в горизонтальной плоскости, так и под каким-то углом. Основной причиной колебаний является неравномерная скорость, с которой воздух огибает провод, из-за чего в верхней и нижней точке возникает разность давления.

Рис. 2: воздействие воздуха на провод

Посмотрите на рисунок 2, здесь приведен пример, когда воздух огибает окружность из точки А в точку Б. Воздушный поток в этом месте закручивается, и возникают завихрения. Это приводит к возникновению сил, давящих не только со стороны ветра, но и в вертикальной плоскости. В нижней точке давление становится меньшим, чем в верхней и при совпадении вихрей с собственными колебаниями возникают горизонтальные перемещения провода.

Следует отметить, что такая ситуация возможна лишь при относительно небольших скоростях воздушных потоков – от 0,5 до 7м/с, так как при увеличении скорости потоки движутся иначе. Но прекращение ветра, увы, не означает окончание вибрации, так как из-за большой протяженности линий в них возникают собственные колебания, которые уже не требуют поддержания, а продолжаются за счет резонансных явлений. И, если вибрация носит незаметный характер, то при пляске, волны станут куда более значительными и опасными.

Пляска проводов

Пляска проводов, так же как и вибрация, возбуждается ветром, но отличается от вибрации большой амплитудой, достигающей 12 — 14 м, и большой длиной волны. На линиях с одиночными проводами чаще всего наблюдается пляска с одной волной, т. е. с двумя полуволнами в пролете (рис. 4), на линиях с расщепленными проводами — с одной полуволной в пролете. В плоскости, перпендикулярной оси линии, провод движется при пляске по вытянутому эллипсу, большая ось которого вертикальна или отклонена под небольшим углом (до 10 — 20°) от вертикали. Диаметры эллипса зависят от стрелы провеса: при пляске с одной полуволной в пролете большой диаметр эллипса может достигать 60 — 90% стрелы провеса, при пляске с двумя полуволнами — 30 — 45% стрелы провеса. Малый диаметр эллипса обычно составляет 10 — 50% длины большого диаметра.

Как правило, пляска проводов наблюдается при гололеде. Гололед отлагается на проводах преимущественно с подветренной стороны, вследствие чего провод получает неправильную форму. При воздействии ветра на провод с односторонним гололедом скорость воздушного потока в верхней части увеличивается, а давление уменьшается. В результате возникает подъемная сила Vy, вызывающая пляску провода.

Опасность пляски заключается в том, что колебания проводов отдельных фаз, а также проводов и тросов происходят несинхронно; часто наблюдаются случаи, когда провода перемещаются в противоположных направлениях и сближаются или даже схлестываются. При этом происходят электрические разряды, вызывающие оплавление отдельных проволок, а иногда и обрывы проводов. Наблюдались также случаи, когда провода линий 500 кВ поднимались до уровня тросов и схлестывались с ними.

Вибрация и пляска проводов на воздушных лэп

Рис. 4: а — волны пляски на проводе в пролете, б — провод, покрытый гололедом, в воздушном потоке друг с другом.

Удовлетворительные результаты эксплуатации опытных линий с гасителями пляски пока недостаточны для уменьшения расстояний между проводами.

На некоторых зарубежных линиях с недостаточными расстояниями между проводами разных фаз установлены изолирующие распорки, исключающие возможность схлестывания проводов при пляске.

4544

Закладки

Последние публикации

Новые вертикальные балочные зажимы EKF

12 сентября в 15:19

38

Новые металлические (трубные) хомуты EKF

12 сентября в 15:17

40

Компания «Иокогава Электрик СНГ» автоматизировала работу Сервисного центра

11 сентября в 16:02

57

Акция «Води электромобиль»: Ответственность за будущее с электротранспортом

11 сентября в 14:48

57

Schneider Electric и Grundfos подписали меморандум о сотрудничестве на территории Российской Федерации

10 сентября в 22:43

60

Онлайн-слет партнеров EKF объединил более 500 участников из России и стран СНГ

10 сентября в 18:18

64

АО «Гидроремонт-ВКК» завершил третий этап реконструкции моста, проходящего по Нижегородской ГЭС

9 сентября в 18:26

66

Schneider Electric вступила в Ассоциацию малой энергетики

9 сентября в 17:00

79

Ко Всемирному дню электротранспорта АВВ открыла новую зарядную станцию в Москве

Популярные статьи  Регулировочные свойства электродвигателей

9 сентября в 14:11

70

Viessmann расширил линейку конденсационных котлов серии Vitodens 050-W

9 сентября в 13:14

56

Самые интересные публикации

Новая газотурбинная ТЭЦ в Касимове выдаст в энергосистему Рязанской области более 18 МВт мощности

4 июня 2012 в 11:00

127653

Выключатель элегазовый типа ВГБ-35, ВГБЭ-35, ВГБЭП-35

12 июля 2011 в 08:56

28545

Выключатели нагрузки на напряжение 6, 10 кВ

28 ноября 2011 в 10:00

15925

Правильная утилизация батареек

14 ноября 2012 в 10:00

12884

Элегазовые баковые выключатели типа ВЭБ-110II

21 июля 2011 в 10:00

12755

Признаки неисправности работы силовых трансформаторов при эксплуатации

29 февраля 2012 в 10:00

11492

Проблемы в системе понятий. Отсутствие логики

25 декабря 2012 в 10:00

10791

Распределительные устройства 6(10) Кв с микропроцессорными терминалами БМРЗ-100

16 августа 2012 в 16:00

10699

Оформляем «Ведомость эксплуатационных документов»

24 мая 2017 в 10:00

10538

Расчет сетей по потерям напряжения

27 февраля 2013 в 10:00

8717

Что такое вибрация и пляска проводов, от чего зависят эти явления – Электро Помощь

Пляска проводов возникает иногда в райо нах, подверженных гололеду, при сильном и порывистом ветре и представляет собой колебания провода с большой амплитудой ( до 8 – 12 м) и незначительной частотой. Длина волны при пляске достигает нескольких сотен метров.

Особенно сильно подвержены пляске провода, покрытые неравномерным слоем гололеда, так как подъемная сила, создаваемая порывами ветра, в этом случае увеличивается. Удары, возникающие при пляске проводов, разрушают арматуру и могут разорвать гирлянду изоляторов или привести к поломке опоры.

Надежных мер, предотвращающих пляску проводов, пока не найдено.  

Пляска проводов возникает иногда в районах, подверженных гололеду, при сильном и порывистом ветре.  

Пляска проводов продолжается обычно несколько часов. Зарегистрирован случай пляски проводов одного участка линии в течение 73 час.  

Пляска проводов чаще наблюдается при проводах, покрытых гололедом, в особенности при одностороннем отложении его.  

Пляски проводов на некоторых линиях не наблюдалось никогда; на некоторых-наблюдается крайне редко – 1 раз в несколько лет. На отдельных участках линий повторяемость пляски значительно ббль шая, доходящая до 1 и более раз в год.  

Пляска проводов производит расстройство крапления проводов к опорам. На линиях со штыревыми изоляторами происходят разрывы вязок провода и даже сдирание изоляторов со штырей.

На линиях с подвесными изоляторами происходят истирания шплинтов замков в головках изоляторов, выпадение их и разрывы гирлянд изоляторов.

Пляска проводов представляет серьезную опасность для надежной работы воздушных линий.  

Пляска проводов более вероятна па линиях гололедных районов ( III и IV районы гололедности), на которых при нормальных режимах работы без гололеда провода и тросы имеют небольшие тяжения. Увеличение тяже-ния по проводу в районах I и II повышает частоту и снижает амплитуду колебаний.   Пляска проводов протекает по-разному. В одних случаях провода пляшут относительно долго с одной и той же амплитудой. В иных случаях пляска проводов то затухает, то снова усиливается.

Пляска проводов и тросов. Помимо вибрации на ряде ВЛ наблюдается явление, получившее название пляски проводов.

Это один из видов автоколебаний, при кото-рем имеет место резонанс собственных колебаний провода и возбуждающей силы.  

Пляска проводов и тросов. Помимо вибрации на ряде ВЛ наблюдается явление, получившее название пляски проводов. Это один из видов автоколебаний, при котором имеет место резонанс собственных колебаний провода и возбуждающей силы.

В наибольшей степени пляске подвержены провода ВЛ, расположенных в гололедных районах, поскольку отложения гололеда изменяют профиль провода ( при одностороннем гололеде сечение становится похожим на крыло) и при наличии ветра возникает сила, поднимающая провод вверх.  

Последствия пляски проводов могут привести к выходу линии из работы на длительное время.  

Виброгаситель на проводе.  

Пляска проводов, так же как и вибрация, возбуждается ветром, но отличается от вибрации большой амплитудой, достигающей 12 – 14 м, и большой длиной волны. В плоскости, перпендикулярной оси линии, провод движется при пляске по вытянутому эллипсу, большая ось которого вертикальна или отклонена под небольшим углом ( до 10 – 20) от вертикали.  

Пляску проводов трудно погасить, потому что гасители колебаний должны быть большого веса.

Мероприятия, снижающие опасное действие вибрации, такие как рессоры, оплетки и удачный выбор конструкции зажима, улучшают работу провода при пляске.

При шарнирном закреплении провода на опоре виброустойчивость провода при редкой пляске, а это в действительности бывает так, может оказаться достаточной на длительный срок эксплуатации.  

Страницы:      1    2    3    4

Методы борьбы

Условия, при которых следует применять защитные меры для гашения амплитуды вибрации, оговаривает п.2.5.85 ПУЭ. При этом учитываются такие параметры, как:

  • Длина пролета;
  • Материал проводника и его сечение;
  • Механическое напряжение в расщепленных и одиночных проводах.

Конкретные методы борьбы регламентируются методическими указаниями РД 34.20.182-90. Для гашения вибрации и пляски устанавливаются специальные устройства.

Вибрация и пляска проводов на воздушных лэп
Рис. 5: пример установки гасителей вибрации

По типу и конструктивным особенностям гасители пляски и вибрации подразделяются на три типа:

  • Петлевые гасители — применяются для проводов напряжением в 6 – 10 кВ и выполняются в виде гибкой распорки. В зависимости от числа петель и конструкции распорок может быть одно- или трехпетлевым. В качестве петлевого зажима используется проволока или крепежные детали.
  • Спиральные – самые эффективные, но и самые дорогие модели для борьбы с высоко- и низкочастотной вибрацией. Из-за дороговизны их редко применяют, хотя они и дают равномерное распределение нагрузки по всей длине гасителя.
  • Мостовые – имеют специальные грузы, которым передается вибрация от раскачивающегося провода и ими же поглощается. Отличаются простотой монтажа и дальнейшего обслуживания.

В линиях от 330 до 750 кВ применяется расщепление фазы, при котором все провода соединяются распорками. Несмотря на то, что такое соединение само может выступать в роли гасителя вибрации, на практике этого не достаточно. Поэтому в главе 5 РД 34.20.182-90 приведены способы борьбы с вибрацией и пляской для различных линий и условий, в которых они могут эксплуатироваться.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: