Виды преобразования электрической энергии

Содержание

Традиционные типы электростанций

Классификация комплексов по добыче энергии производится по самым разным признакам. Определяющим фактором выступают источники электроэнергии и принцип работы.

Различают следующие виды электростанций.

  • Атомные – система базируется на реакции деления и синтеза. Последние существуют только в проекте.
  • Газовые – используют природное топливо. Разделяются на электростанции, работающие на газе из месторождений и на рудничном, болотном газе.
  • Жидкотопливные – дизельные или бензиновые. Такие станции носят локальный характер.
  • Твердотопливные – угольные и торфяные.
  • Гидроэлектростанции – используют работу водяного потока в самых разных вариантах. Сегодня существуют комплексы, использующие силу прилива и отлива, эксплуатирующие морские течения, русловые и прочие варианты.

Выделяют станции нетрадиционные: ветровые, гелиостанции.

Тепловые

Водяной пар является теплоносителем. В нагретом состоянии он сам становится источником энергии. По сути, это усовершенствованная паровая машина.

Различают ТЭЦ и ТЭС. ТЭС рассчитана на получение только электроэнергии. ТЭЦ, помимо генерирования тока, подает горячую воду. Принцип работы обоих комплексов почти одинаков.

В топку подают одновременно топливо и разогретый воздух в качестве окислителя. Чаще всего для теплоэлектростанций берут уголь. Однако торфяные могут работать и на брикетах. Топливо измельчено до состояния пыли, чтобы обеспечить максимально полное сгорание. Тепло от сгорания нагревает воду, превращая ее в пар. Последняя подается на паровую турбину. Водяной пар заставляет вращаться ротор генератора и преобразует энергию тепла в электричество.

Пар попадает к конденсатору, где вновь превращается в воду. Насосом воду перекачивают в реактивные нагреватели, затем в деаэратор. Здесь вода освобождается от газов, поскольку они провоцируют коррозию оборудования и вновь подается в котел.

Плюсы и минусы ТЭС

Простота конструкции
Дешевое топливо
Небольшая площадь
Низкая стоимость электроэнергии

Загрязнение атмосферы продуктами сгорания угля
Дорогое обслуживание
Невысокая производительность

Атомные

Опыты по использованию атомной энергии при работе генераторов проводились с 1948 года. Первая в мире АЭС была построена в СССР под руководством академика Курчатова.

Так же как тепловые, атомные делят на АЭС – вырабатывающие только электроэнергию, и АТЭЦ – подающие горячую воду. Схема работы не слишком отличается от тепловой станции, так как в конечном итоге двигающей силой здесь выступает пар. Но источником нагрева является ядерный реактор.

В результате протекания ядерной реакции в реакторе выделяется тепло. Оно передается теплоносителю первого контура. Жидкость уходит на теплообменник – парогенератор, где нагревает до кипения теплоноситель во втором контуре. Отсюда пар подается на турбину, при вращении которой и вырабатывается электрический ток. Затем пар охлаждается, в конденсаторе дегазируется и подается вновь во второй контур. Оба контуры замкнуты.

Плюсы и минусы АЭС

Независимость от источников топлива из-за небольшого объема материала, необходимого для работы
Отсутствуют вредные выбросы
Высокая производительность
Обеспечение электроэнергией крупных регионов

Нужен большой объем воды для охлаждения конденсаторов
Тяжелые и опасные последствия аварии

Сложность представляет и утилизация отработанного ядерного топлива.

Гидроэлектростанции

Такой комплекс использует в качестве движущей силы естественные природные явления: приливы и отливы, течение рек, силу падающего потока и прочее. Топливо для работы станций не нужно, что делает стоимость полученного таким образом электричества минимальной.

Создают или находят водяной поток нужной мощности – водопад, морское течение. Чаще перепад давлений создают искусственно, сооружая плотину. Сдерживаемая перед плотиной вода при выпуске вырывается с большим напором и приводит в действие лопасти гидротурбин. Они и превращают энергию движения воды в электричество.

Плюсы и минусы ГЭС

Стоимость тока в 2 раза ниже, чем на ТЭС
Турбины могут работать на любой мощности
Набирает мощность от 30 секунд до 2 минут
Течение реки — возобновляемый ресурс
Крупные станции сильно удалены от пользователей
Постройка плотины и эксплуатация ГЭС нормализуют климат

Высокая стоимость строительства
Вредное влияние на водохозяйственные объекты
Необходимость затопления больших территорий при стройке

Нетрадиционные источники электроэнергии

Нетрадиционные источники представлены геотермальными электростанциями (рис. 1), работающими на тепловой энергии, поступающей из земных недр. Чем глубже от поверхности земли, тем выше температура данного слоя. В России такие установки построены на Камчатке и на Курильских островах.

Виды преобразования электрической энергии

Существуют конструкции приливных электростанций (рис. 2), которые функционируют от энергии, создаваемой приливами и отливами в самом узком месте искусственного залива, отсеченного от моря. В качестве примера можно привести опытную Кислогубскую ПЭС, возведенную на Кольском полуострове.

Классификация электростанций включает в себя солнечные и ветровые альтернативные установки (рис. 3). Все виды таких систем обеспечивают электроэнергией небольшие предприятия и производства, используются в частном секторе для удовлетворения бытовых потребностей. В основном, это районы и места, где отсутствует централизованное электроснабжение и нет возможности подключиться к обычным ЛЭП.

Газотурбинная электростанция (ГТЭС)

Тепловые электростанции (ТЭС)

Газовые электростанции

Геотермальные электростанции (ГТЭС)

Волновая электростанция (ВЭС)

Дизельные электростанции (ДЭС)

Статические преобразователи мощности

В отличие от электрических машин, силовые трансформаторы не содержат движущихся частей. Их работа основана на электромагнитной связи между первичной и вторичной обмотками, окружающими один и тот же магнитопровод.

В дополнение к электрическим машинам и силовым трансформаторам существуют силовые преобразователи, работа которых не основана на электромагнитной связи токовых цепей и магнитопровода.

Преобразователи, содержащие полупроводниковые силовые переключатели, известны как статические силовые преобразователи или устройства силовой электроники. Одним из таких примеров является диодный выпрямитель, содержащий четыре силовых диода, соединенных в мост. Питаемый переменным напряжением, диодный выпрямитель выдает пульсирующее постоянное напряжение. Диодный выпрямитель осуществляет преобразование электрической энергии переменного тока в электрическую энергию постоянного тока.

Преобразование электрической энергии постоянного тока в электрическую энергию переменного тока осуществляется инверторами, статическими преобразователями мощности, содержащими полупроводниковые силовые ключи, такие как силовые транзисторы или силовые тиристоры. Статические преобразователи мощности часто используются в сочетании с электрическими машинами.

Приемники электрической энергии, их основные характеристики

Приемником электрической энергии (электроприемником) называется аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии для ее использования. Потребителем электрической энергии называется электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории. Электроприемники I категории – электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства. Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования. Примерами приемников, работающих в этом ре­жиме, являются электродвигатели компрессоров, насосов, вентиля­торов и т. п. Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания. Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания. Электроприемники II категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. Приме­рами данной группы приемников являются электродвигатели элек­троприводов вспомогательных механизмов металлорежущих станков (механизмы подъема поперечины, зажимы колонн, двигатели быстро­го перемещения суппортов и др.), гидравлических затворов и т. п. Электроприемники III категории– все остальные электроприемники, не подходящие под определения I и II категорий. Это приемники вспомогательных цехов, несерийного производства продукции и т.п. Примером этой группы приемников являются электродвигатели кранов, сва­рочные аппараты и т. п.

Популярные статьи  Что такое номинальный ток проводника?

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности – P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач – тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство – чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Основополагающие законы электромеханического преобразования энергии в индуктивных машинах

Закон Ампера

Виды преобразования электрической энергии

Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила

  • где F – сила, Н,
  • I – сила тока, А,
  • – длина проводника, м,
  • B — магнитная индукция, Тл,
  • — угол между направлением тока и вектором магнитной индукции, град.

Направление этой силы определяется по правилу «левой руки».

Закон электромагнитной индукции Фарадея

Открытие электромагнитной индукции в году Фарадеем — одно из фундаментальных открытий в электродинамики. Максвеллу принадлежит следующая углубленная формулировка закона электромагнитной индукции:

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле.
Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением

,

  • где E – напряженность электрического поля, В/м,
  • ds – элемент контура, м,
  • Ф — магнитный поток, Вб,
  • t — время, с

Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции

,

где – электродвижущая сила индукции, В

Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Преобразование мощности переменного тока

AC в DC

Следующие устройства могут преобразовывать переменный ток в постоянный:[требуется дальнейшее объяснение

  • Выпрямитель
  • Сеть источник питания блок (БП)
  • Мотор-генератор
  • Поворотный преобразователь
  • Импульсный источник питания
Эта секция нуждается в расширении

. Вы можете помочь добавляя к этому.(Май 2021 г.)

AC в AC

Основная статья: Преобразователь переменного тока в переменный

Следующие устройства могут преобразовывать переменный ток в переменный:[требуется дальнейшее объяснение

  • Трансформатор или автотрансформатор
  • Преобразователь напряжения
  • Регулятор напряжения
  • Циклоконвертер
  • Трансформатор переменной частоты
  • Мотор-генератор
  • Поворотный преобразователь
  • Импульсный источник питания
Эта секция нуждается в расширении

. Вы можете помочь добавляя к этому.(Май 2021 г.)

Вращающиеся преобразователи мощности

Электрические машины, преобразующие электрическую энергию в механическую работу, называются электрическими двигателями.

Популярные статьи  Блок питания для шуруповерта 12в своими руками

Электрические машины, преобразующие механическую работу в электрическую энергию, называются электрическими генераторами.

Виды преобразования электрической энергииМеханическая энергия обычно проявляется в форме вращательного движения. Электрические двигатели и генераторы называются преобразователями вращательной мощности или вращающимися электрическими машинами. Процесс преобразования электрической энергии в механическую работу называется электромеханическим.

Электрические машины состоят из токовых цепей, изготовленных из изолированных проводников и магнитопроводов, изготовленных из ферромагнитных материалов. Машины производят механическую работу за счет действия электромагнитных сил на проводники и ферромагнетики, соединенные магнитным полем. Проводники и ферромагнитные элементы принадлежат либо движущейся части машины (ротору), либо неподвижной части (статору). Вращение движущейся части машины способствует изменению магнитного поля. В свою очередь, в проводниках индуцируется электродвижущая сила, которая вырабатывает электрическую энергию. Аналогично, электрический ток в проводниках машины , называемых обмотками, взаимодействует с магнитным полем и создает силы, которые возбуждают движение ротора.

Силовые трансформаторы, Их виды и применение

«Сердце» подстанции – трансформатор. Именно он преобразует переменный ток и от него зависит направление работы всей установки, то есть понижение или повышение напряжения электроэнергии.

В зависимости от охлаждающей и изолирующей среды эти устройства делятся на масляные и сухие трансформаторы.

Оба вида установок широко распространены, однако чаще применяются масляные силовые трансформаторы. Они стабильно работают в диапазоне температур от -60 до +40. Такие устройства могут использоваться как внутри помещения, так и снаружи. Однако их применение предъявляет повышенные требования к окружающей среде: она не должна быть химически активной и взрывоопасной. Потому, в тех условиях, когда масляные применять нельзя, используют сухие трансформаторы. 

Они более экологичны, экономически выгодны, обладают свойствами самоугасания при пожаре и не выделяют ядовитых газов. Применение сухих трансформаторов наиболее обосновано в тех местах, где к безопасности предъявляются жесткие требования: в метро, в аэропортах, на атомных электростанциях, нефтеперерабатывающих платформах и тому подобных.

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.

Недостатки

  • Эффективность зависит от времени суток и погоды. Нерентабельно использовать в высоких широтах;
  • Требуется аккумулировать преобразованную энергию;
  • Первоначальные вложения высокие. Особенно это ощутимо для обычных людей при покупке оборудования для частного дома;
  • Периодически нужно делать очистку панелей от загрязнения;
  • Для размещения требуется большая площадь;
  • Некоторые фотоэлементы имеют в своём составе Pb, Cd, мышьяк, что усложняет и переработку.

§ 46. Преобразование механической энергии в электрическую и обратно

На законах электромагнитной индукции и электромагнитных сил основано действие электрических машин — генераторов, преобразующих механическую энергию в электрическую, и двигателей, преобразующих электрическую энергию в механическую.

Обратимся к рис. 95. В магнитном поле между полюсами N и S помещен прямолинейный проводник. Если при помощи внешней механической силы F передвигать этот проводник перпендикулярно магнитным линиям поля, то в нем будет индуктироваться э.д.с. Е = Blυ.

Виды преобразования электрической энергииРис. 95. Преобразование механической энергии в электрическую

Если концы проводника замкнуты на внешнее сопротивление, то по цепи потечет ток I, совпадающий по направлению с э.д.с. Е.

Напишем уравнение 2-го закона Кирхгофа для этой цепи:

E = U + I ⋅ r, (a)

где U — напряжение на зажимах, в;

r — сопротивление проводника, ом;

I ⋅ r — падение напряжения в проводнике, в.

Умножая почленно выражение (а) на I, получим

E ⋅ I = UI + I2r.

Так как Е = Blυ, то

Blυ ⋅ I = UI + I2r.

Учитывая, что ВIl = F и Fυ = Рмех, имеем

Рмех = Pэл + ΔР, (б)

где Рмех = E ⋅ I — механическая мощность, преобразуемая в электрическую;

Рэл = UI — электрическая мощность, отдаваемая во внешнюю цепь;

ΔP = I2r — потери мощности (в виде тепла) в сопротивлении проводника. Рассмотрим теперь процесс преобразования электрической энергии в механическую.

Пусть прямолинейный проводник АВ (рис. 96), по которому проходит ток I от источника напряжения, помещен во внешнее магнитное поле, образованное магнитом N — S. Если проводник неподвижен, то энергия источника напряжения расходуется исключительно на нагрев проводника:

A = UIt = I2rt дж.

Виды преобразования электрической энергииРис. 96. Преобразование электрической энергии в механическую

Затрачиваемая мощность будет равна

Pэл = UI = I2r вт,

откуда определяем ток в цепи:

I = U/r. (а)

Однако известно, что проводник с током, помещенный в магнитное поле, будет испытывать действие силы F со стороны поля, стремящейся перемещать проводник в магнитном поле в направлении, определяемом правилом левой руки. При своем движении проводник будет пересекать магнитные линии поля и в нем, по закону электромагнитной индукции, возникнет индуктированная э.д.с. Направление этой э.д.с., определенное по правилу правой руки, будет обратным току I. Назовем ее обратной э.д.с. Eобр. Величина Eобр согласно закону электромагнитной индукции будет равна

Eобр = Blυ.

По второму закону Кирхгофа, для замкнутой цепи имеем

U — Eобр = Ir

или

U = Eобр + Ir, (б)

откуда ток в цепи

I = U — Eобр . (в)
r

Сравнивая выражения (а) и (в), видим, что в проводнике, движущемся в магнитном поле при одних и тех же значениях U и r, ток будет меньше, чем в неподвижном проводнике.

Умножая почленно выражение (б) на I, получим

UI = EобрI + I2r.

Так как Eобр = Blυ, то

UI = BlυI + I2r.

Учитывая, что BlI = F и Fυ = Рмех, имеем

UI = Fυ + I2r

или

Pэл = Pмех + ΔP.

Последнее выражение показывает, что при движении проводника с током в магнитном поле мощность источника напряжения преобразуется в механическую мощность и частично в тепловую. Аналогичный процесс преобразования электрической энергии в механическую происходит в электрических двигателях.

Рассмотренные выше примеры показывают, что электрическая машина обратима, т. е. может работать как генератор и как двигатель.

Первичные источники электропитания

Источники электропитания условно делятся на первичные и вторичные источники.

Популярные статьи  Как правильно и безопасно частично заменить алюминиевую проводку на медную?

Первичными источникам и электропитания (ПИЭЭ)называются устройства, предназначенные для получения электроэнергии из других видов энергии.

К ПИЭЭ относятся следующие источники (рис.1.5):

фотоэлектрические преобразователи (солнечные батареи), непосредственно преобразующие солнечную энергию в электрическую;

термоэлектрические генераторы (ТЭГ) и термоэмиссионные преобразователи (ТЭП), преобразующие тепловую энергию в электрическую;

электромашинные преобразователи (ЭМП) – генераторы переменного и постоянного тока, преобразующие механическую энергию в электрическую.

Виды преобразования электрической энергии

Рисунок 1.5 – Классификация первичных источников электроэнергии

ЭМП широко используются в паросиловых, дизель — генераторах и газотурбинных установках, в которых преобразование тепловой энергии в механическую производится соответственно с помощью паровых турбин (ПТ), двигатель внутреннего сгорания (ДВС) и газовых турбин (ГТ);

химические источники тока, непосредственно преобразующие химическую энергию в электрическую. К ним относятся:

а) гальванические элементы (ГЭ);

б) аккумуляторные батареи (АБ);

в) электрохимические элементы (ЭХГ).

Довольно редко и только в маломощных автономных СЭП удается осуществить питание всех устройств непосредственно от ПИЭЭ. В большинстве случаев ПИЭЭ или стандартная сеть по частоте, стабильности или уровню напряжения оказывается неприемлимыми для питания РЭСБН.

Следовательно, возникает необходимость преобразования электроэнергии с помощью источников вторичного электропитания.

ИВЭП по своей физической сущности являются преобразователями вида и качества электрической энергии и составляют основу всех систем электропитания РЭСБН.

В составе СЭП РЭСБН источники вторичного электропитаниямогут выполнять следующие функции:

— обеспечение требуемых значений питающего напряжения как постоянного, так и переменного токов;

— осуществление гальванической развязки цепей питания друг от друга и от ПИЭЭ;

— обеспечение высокой стабильности питающего напряжения в условиях значительного изменения входного питающего напряжения и нагрузок;

— эффективное подавление пульсаций во входных питающих цепях постоянного тока;

— обеспечение требуемой формы напряжения переменного тока и другие.

Защитные устройства

В современном мире с каждым годом увеличивается спрос на электротехническую продукцию, а на замену устаревшему оборудованию приходит новое. Без таких устройств невозможна работа электросети. Кроме того, они обеспечивают безопасность эксплуатации и увеличивают срок службы бытовых приборов и промышленного оборудования.

Также такая продукция позволяет автоматизировать некоторые процессы. Примером могут служить автоматические выключатели, которые проводят ток цепи в нормальных режимах и автоматически защищают электрические сети и оборудование от аварийных режимов.

Немаловажным является устройство защитного отключения. Оно отключает систему в случае утечки тока в результате пробоя на корпус электрических нагревателей, духовых шкафов, стиральных машин и других бытовых приборов, и таким образом защищает человека от поражения электрическим током.

Одним из наиболее современных защитных устройств являются дифференциальные автоматы, которые совмещают в себе функции автоматического выключателя и УЗО.

Реверсивные машины

Электрические машины в основном реверсивны.

Реверсивная электрическая машина может работать либо как генератор, преобразующий механическую работу в электрическую энергию, либо как двигатель, преобразующий электрическую энергию в механическую работу. Переход от генератора в режим работы двигателя сопровождается изменением электрических и механических переменных, таких как напряжение, ток, крутящий момент и скорость. Режим работы может быть изменен без изменений в конструкции машины, без изменения в цепях тока и без изменений в соединении вала между электрической и рабочей машиной. Примером реверсивной электрической машины является асинхронный двигатель. При угловых скоростях вращения ротора ниже синхронной скорости асинхронная машина работает в режиме двигателя. Если скорость увеличивается выше синхронной скорости, электромагнитный крутящий момент противодействует движению, в то время как асинхронная машина преобразует механическую работу в электрическую энергию, таким образом, работая в режиме генератора.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

Основные виды первичных источников:

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

Нетрадиционные способы производства электроэнергии

Виды преобразования электрической энергииПроизводство электроэнергии возможно и другими методами. Большинство из них тоже являются вариантами природопользования, что решает вопрос с топливом. Однако они не так распространены из-за невысокой производительности.

  • Ветроэнергетика – используют силу потока воздуха. Ветер крутит лопасти турбин, вырабатывается электричество. Существенный минус установки: полная зависимость от силы ветра. Плюс: даровая энергия и абсолютная экологичность. В Дании 48% электричества получают с помощью автономных ветровых установок.
  • Биотопливо – модифицированная тепловая станция, использует в качестве топлива отходы: стружку, паллеты, лузгу, солому, синтез-газ и прочее.
  • Гелиоэнергетика – производство электроэнергии обеспечивает излучение солнца. Принцип работы разный. Солнечный коллектор нагревает воду для отопления. При нагреве воды до пара можно использовать последний для получения электричества. В энергетической башне пары воздуха сильно нагреваются в очень большом парнике. Кинетическую энергию восходящего потока воздуха преобразователь превращает в электричество.
  • Геотермальная станция – рациональный, пассивный вариант. Для нагрева воды для отопления и даже для получения тока используется разница между температурой почвы выше и ниже уровня замерзания.

Трансформаторные подстанции

Электроустановки, которые предназначены для распределения электроэнергии и преобразования напряжения в сети называются трансформаторные подстанции. В их состав входят распределительные устройства, силовые трансформаторы, устройства защиты и автоматического управления, а также прочие вспомогательные агрегаты.

Трансформаторные электроустановки применяются в различных сферах деятельности. Их используют на промышленных предприятиях, в сельском хозяйстве и в населенных пунктах с развитой инфраструктурой, работоспособность которой поддерживать нужно постоянно и качественно.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: