Выбор асинхронного электродвигателя для работы в режиме динамического торможения самовозбуждением

Принцип торможения противотоком

Мотор отключается от электросети, и пока ротор продолжает вращаться, вновь подключается противофазой. Такая система создаёт эффективный момент блокировки, обычно превышающий пусковой момент.

Между тем, этот эффективный момент торможения должен быть быстро нивелирован, чтобы двигатель после остановки не вращался в противоположном направлении. Несколько устройств контроля и автоматики привлекаются для обеспечения замедления вращения вала электродвигателя до его полной остановки:

  • датчики остановки фрикциона,
  • датчики центробежного останова,
  • хронометрические приборы,
  • реле частоты,
  • реле напряжения ротора (для двигателей с фазным ротором) и т. д.

Торможение двигателя с короткозамкнутым ротором

Прежде чем выбирать систему противотока для асинхронного мотора с КЗ ротором, важно обеспечить устойчивость двигателя к противоточному способу с учётом требуемой нагрузки. Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора

Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора.

Тепловое напряжение на противотоке в три раза больше, чем при наборе скорости вращения. Здесь пики тока и крутящего момента заметно выше, если сравнивать с моментом пуска.

Принцип методики противоточного воздействия на схему электродвигателя с целью быстрого замедления хода с последующей остановкой. Слева — нормальный рабочий цикл. Справа — цикл замедления и останова

Поэтому для обеспечения плавного останова двигателя системой противотока, как правило, последовательно с каждой фазой статора устанавливают резистор. Благодаря такому добавлению, при переключении уменьшается крутящий момент и ток, до значений, равных тем, что отмечаются на статоре в режиме пуска.

Однако противоточная система торможения имеет ряд серьёзных недостатков. Поэтому этот способ для асинхронных двигателей с короткозамкнутым ротором используется в редких случаях и преимущественно на маломощных моторах.

Противоточное торможение на двигателях с фазным ротором

Чтобы ограничить ток и крутящий момент, прежде чем статор будет переключен на противоточный ход, крайне важно использовать резисторы ротора, используемые для запуска. При этом следует периодично добавлять дополнительную резистивную секцию торможения

При правильно подобранном значении роторного резистора, регулировать тормозной момент до требуемого значения несложно

При этом следует периодично добавлять дополнительную резистивную секцию торможения. При правильно подобранном значении роторного резистора, регулировать тормозной момент до требуемого значения несложно.

Момент переключения тока даёт напряжение ротора практически в два раза большее, чем когда ротор находится в состоянии покоя, что иногда требует особых мер при изоляции.

Принцип противоточной электрической блокировки на моторах с фазным ротором. Слева — нормальный режим работы. Справа — замедление с остановом

Как и в случае с силовыми двигателями, цепь ротора выделяет значительное количество энергии. Вся выделенная энергия полностью рассеивается на резисторах (за исключением небольших потерь).

Двигатель может быть остановлен автоматически одним из вышеупомянутых устройств контроля. Например, с помощью реле напряжения или частоты в цепи ротора. С помощью схемы противотока удаётся поддерживать ведущую нагрузку с умеренной скоростью.

Однако характеристика крайне неустойчива (значительные колебания скорости по отношению к малым изменениям крутящего момента).

Динамическое торможение асинхронного двигателя

Осуществляется путем подачи постоянного тока в статор асинхронного двигателя после отключения статора от сети переменного тока контактором КМ1.

Динамическое торможение можно осуществлять как для двигателя с короткозамкнутым ротором, так и для двигателя с фазным ротором. Причем у двигателя с фазным ротором сопротивление в цепь ротора может быть включено или ротор замкнут накоротко без сопротивлений.

Схема динамического торможения асинхронного двигателя.

Тормозная характеристика асинхронного двигателя при динамическом торможении: кривая 7 — электромеханическая характеристика, кривые 4-6 механические характеристики.

При подаче постоянного тока в две фазы обмотки статора в воздушном зазоре асинхронного двигателя создается постоянное магнитное поле. Когда ротор попадает в это поле, в нем наводится постоянная ЭДС, направленная навстречу ЭДС вращающего магнитного поля, и ротор притормаживается.

При этом торможении двигатель работает в режиме генератора, независящего от сети переменного тока и преобразует кинетическую энергию движущихся частей электропривода в электрическую энергию, которая рассеивается в виде тепла в цепи ротора.

Процессом динамического торможения можно управлять, то есть изменять время торможения двумя способами. У асинхронных электродвигателей с короткозамкнутым ротором можно изменять тормозной ток. Для двигателей с фазным ротором можно изменять величину добавочного сопротивления в цепи ротора.

Недостатком динамического торможения является несимметрия магнитного поля при торможении, так как постоянный ток попадает только в две фазы. Несимметрия приводит к вибрации машины во время торможения.

В машинах мощностью более 100 кВт, чтобы избежать вибрации, с помощью усложнения силовой схемы подают постоянный ток во все три фазы. Но это очень усложняет и удорожает привод.

Источник

После отключения от сети электродвигатель продолжает движение по инерции. При этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Поэтому скорость электродвигателя через промежуток времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Все способы торможения электродвигателей можно разделить на два основных вида: механическое и электрическое.

При механическом торможении кинетическая энергия преобразуется в тепловую, за счет которой происходит нагрев трущихся и прилегающих к ним частей механического тормоза.

При электрическом торможении кинетическая энергия преобразуется в электрическую и в зависимости от способа торможения двигателя либо отдается в сеть, либо преобразуется в тепловую энергию, идущую на нагрев обмоток двигателя и реостатов.

Наиболее совершенными считают такие схемы торможения, при которых механические напряжения в элементах электродвигателя незначительны

Схемы динамического торможения асинхронных двигателей

Для управления моментом при динамическом торможении асинхронным двигателем с фазным ротором по программе с заданием времени используются узлы схем, приведенные н а рис. 1, из которых схема р и с. 1, а применяется пр и наличии сети постоянного тока, а схема рис. 1, б — при отсутствии ее.

В качестве тормозных резисторов в роторе используются пусковые резисторы R1, включение которых в режиме динамического торможения производится отключением контакторов ускорения, показанных в рассматриваемых узлах схем условно в виде одного контактора КМ3, команда на отключение которого подается блокировочным контактом линейного контактора КМ1.

Популярные статьи  Почему между контуром заземления тп и лужей 36 в?

Рис. 1 Схемы управления динамическим торможением асинхронных двигателей с фазным ротором с заданием времени при наличии и отсутствии сети постоянного тока

Торможение вводом постоянного тока

Этот вариант используется на двигателях с фазным и короткозамкнутым ротором. Если сравнивать с противоточной системой, стоимость применения источника выпрямленного тока компенсируется меньшим количеством резисторов.

Благодаря электронным регуляторам скорости и стартерам, этот способ торможения асинхронных  электродвигателей видится вполне экономичным.

Принцип останова путём ввода постоянного тока. Для работы этой системы требуется источник постоянного напряжения. Требования к величине напряжения не критичны

Методика предполагает отключение обмоток статора от сети и подачу на обмотки выпрямленного тока. Прохождение выпрямленного тока по обмоткам статора сопровождается образованием фиксированного потока в воздушном зазоре между ротором и статорным кольцом двигателя.

Для достижения значения этого потока, способного обеспечить надлежащее торможение, ток должен быть примерно в 1,3 раза выше номинального тока. Избыток тепловых потерь, неизбежно вызываемых этим незначительным превышением, обычно компенсируется временной паузой после останова мотора.

Критерии применения метода вводом постоянного тока

Поскольку значение тока зависит от сопротивления обмотки статора, напряжение на источнике выпрямленного тока невысокое. Обычно источником выступает схема выпрямителя или контроллера скорости.

Эти источники выпрямленного тока должны быть адаптированы к переходным скачкам напряжения, происходящим на обмотках в момент отсоединения от переменного источника питания.

Движение ротора здесь следует рассматривать скольжением относительно поля, зафиксированного в пространстве. Поведение двигателя аналогично синхронному генератору с разгрузкой на роторе. Поэтому важны отличия характеристик, полученных на торможении вводом выпрямленного тока, по сравнению с противоточной схемой:

  1. Меньше энергии рассеивается на резисторах ротора или в теле ротора. Процесс эквивалентен механической энергии, массово выделяемой при движении. Единственная мощность, потребляемая от сети, — возбуждение статора.
  2. Когда нагрузка не является управляемой, двигатель не запускается в противоположном направлении.
  3. Если нагрузка является управляемой, система действует постоянно и удерживает нагрузку на низкой скорости. То есть достигается фактор замедления, а не полного торможения. Характеристика намного стабильнее, чем у системы противотока.

На моторах с фазным ротором характеристики крутящего момента зависят от выбора резисторов.

Вариант тормозных резисторов: 1 — датчик нагрева; 2 — металлический шунт; 3 — высокотемпературный проводник; 4 — проволочный резистивный элемент; 5 — температурный блок; 6 — корпус

На двигателях с короткозамкнутым ротором система позволяет легко регулировать момент торможения электродвигателя, воздействуя на энергетику постоянного тока. Тем не менее, тормозной момент остаётся низким, если мотор имеет высокие обороты.

Асинхронный двигатель и его работа

Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Встроенный тормоз электродвигателя

Электродвигатели с тормозом применяются во многих отраслях промышленности в качестве привода оборудования, требующего остановки за время, определенное регламентом в зависимости от производственной задачи после отключения питания мотора.

Двигатели могут комплектоваться тормозами постоянного или переменного тока различного напряжения в зависимости от габарита мотора. Могут быть укомплектованы ручкой для принудительного растормаживания или быть без нее. Тормозной момент электродвигателя может регулироваться или нет.

Устройство электромагнитного тормоза постоянного тока для электродвигателя

Выбор асинхронного электродвигателя для работы в режиме динамического торможения самовозбуждением

  1. Корпус электромагнита 2. Катушка тормоза 3. Пружина 4. Якорь электромагнита 5. Ручка растормаживания 6. Регулировочный болт 7. Болт крепления 8. Тормозной диск 9. Зубчатая муфта 10. Задний подшипниковый щит. Q — воздушный зазор.

Электродвигатели с тормозами постоянного тока дополнительно комплектуются выпрямителями с 4-мя или 6-ю контактами. Схемы подключения электромагнитных устройств бывают 2 типов после отключения питания:

  1. Переключение на стороне переменного тока

При подобном переключении магнитное поле спадает медленно, как следствие тормоз срабатывает медленнее и вследствие этого медленнее растет тормозной момент. Такой способ переключения применяется там, где нет необходимости в быстром срабатывании тормоза.

  1. Переключение на стороне постоянного тока

В такой схеме переключение происходит между выпрямителем и электромагнитом, магнитное поле редуцируется с высокой скоростью и тормозной момент быстро увеличивается. Скачки высокого напряжения, которые образуются как следствие такого подключения, приводят к искрению контактов выпрямителей, однако они не наносят ущерба оборудованию, так как выпрямители оснащены защитными средствами. Такое подключение применяется там, где нужно позиционирование привода, а так же большое количество переключений.

Источник

Торможение двигателей постоянного тока

Виды электрического торможения. Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного тока: 1) рекуперативное торможение — генераторное торможение с отдачей электрической энергии в сеть; 2) динамическое или реостатное торможение — генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря; 3) электромагнитное торможение — торможение противовключением.

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном и, т. е. является тормозным.

Рекуперативное торможение. Двигатель с параллельным в озбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения и выше п0 = U/ceФ. В этом случае ЭДС машины становится больше напряжения сети и ток согласно (8.80) изменяет свое направление, т. е. двигатель переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением (рис. 8.71, а) механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов.

Рис. 8.71. Схема и механические характеристики машины постоянного тока в двигательном и генераторном режимах.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат Rдо6 (рис. 8.72, а) При этом машина работает как генератор, создает тормозной момент, но выработанная электрическая энергия бесполезно гасится в реостате. Регулирование тока Ia = Е/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб, подключенного к обмотке якоря.

Популярные статьи  Работа тока – в чем измеряется

Рис. 8.72. Схема и механические характеристики двигателя с параллельным возбуждением в режиме динамического торможения.

Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя — путем переключения проводов, подводящих ток к обмотке якоря (рис. 8.76, а) или к обмотке возбуждения. Чтобы ограничить значение тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление Rдоб. Регулирование тока Ia = (U + Е)/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб или ЭДС Е (тока возбуждения Iв). Механические характеристики в этом режиме для двигателей с параллельным и последовательным возбуждением показаны на рис. 8.76, б и в.

Рис.8.76. схема и механические характеристики двигателей в режиме электромагнитного торможения.

21.Универсальные коллекторные двигатели — это электродвигатели малой мощности последовательного возбуждения с секционированной обмоткой возбуждения, благодаря чему они могут работать как на постоянном, так и на переменном стандартных напряжениях примерно с одинаковыми свойствами и характеристиками. Такие электродвигатели используют для привода маломощных быстроходных устройств и многих бытовых приборов. Они допускают простое, широкое и плавное регулирование скорости.

По своему устройству эти двигатели отличаются от двигателей постоянного тока общего применения конструкцией статора, магнитную систему которого собирают из топких изолированных друг от друга листов электротехнической стали с выступающими полюсами, на которых размещают по две секции обмотки возбуждения. Эти секции соединяют последовательно с якорем и располагают по обе стороны от его выводов, что снижает радиопомехи от ценообразования на коллекторе под щетками, которое при питании двигателя от сети переменного напряжения особенно усиливается из-за существенного ухудшения условий коммутации.

Источник

Текст

,Ч. Кл. Н 02 р 3/2 Гасударственный комитет Совета Министрав СССР оа долам изааретений и открытийПриоритет Опубликовано 03.Х.1973. Бюллетень ЛЪДата опубликования описания 12.11.1974 УДК 621,316.719(088,8) Авторизобретения В. И, ашкал аявите Н НОГО ТОРМОЖТРОДВИ ГАТЕЛ о тормо- беспечиигателей рной баятую емтем, чтоическую 10 аторной е двига схе леи отся его 2его копредеПредмет изоб ен ия 5 заатывает, юченного ечивают игади тся,СПОСОБ КОНДЕНСАТО АСИ НХРО Н Н ЪХ ЭЛИзобретение относится к области тормония асинхронных двигателей.Известные системы конденсаторногжения асинхронных двигателей не овают условий самовозбуждения двпри использовании общеи конденсатотареи и включение двигателей на занкость.Описываемый способ отличаетсякратковременно прерывают электрсвязь тормозных двигателей с конденсбатареей и затем вновь подключает встеди к этой батарее.На фиг. 1 изображена принципиальнаяма устройства для трех двигателей для оществлени я описываемого способа;фиг. 2 — схема управления торможенасинхронных электродвигателей.После отключения одного из двигатесети, например двигателя 1, включаеттормозной контактор 2 и присоединяетконденсаторной батарее 3 на время,ляемое выдержкой реле 4. При этом в цкатушки реле совместного торможенмыкается контакт 6, но реле не срабтак как из-за последовательно вклрезистора 7 ампервитки реле не обесппритягивания якоря реле.Если в процессе торможения первого двтеля к конденсаторной батарее 3 присоеняется второй двигатель 8, то оказывае что в цепи катушки реле 5 два резистора 7 и 9 включены параллельно. Это приводит к увеличению тока катушки и срабатыванию реле 5. Последнее размыкает контакт в цепи катушки контактора 10. Вслед за этим включается реле 11, шунтируя контакт контактора 10 в своей цепи, а затем — реле 12, Оно шунтирует разомкнувшийся вначале контакт контактора 13 в цепи катушки 14. Благодаря этому контактор 10 включается вновь.Кратковременное отключение контактора 10 приводит к уравниванию напряжений статора обоих электродвигателей соединительными проводниками, в связи с чем прн повторном включении контактора 10 условия самовозбуждения обоих двигателей существенно улучшаются и торможение их протекает нормально. Способ конденсаторного торможения асинхронных электродвигателей, отличаюи 1 ийся тем, что, с целью улучшения условий самовозбуждения двигателей при использовании общей конденсаторной батареи и включении двигателей на занятую емкость, кратковременно прерывают электрическую связь тормозимых двигателец с конденсаторной батареей и затем вновь подключают все двигатели к упомянутой батарее.390986 Составитель Ч, Иаздю ПодписпоСР якяз 28,1 И погряфин, пр, Сапунова, 2 Изд. ГА 81 Государственного коми по лелям изобрете Москва, Ж.35, РаунТираж 755 тета Совета Министро пй и открытий скан паб д. 4/5

Смотреть

Динамическое торможение асинхронного двигателя

Динамическое торможение АД (торможение постоянным током) осуществляется путем подключения к двум любым обмоткам статора источника постоянного тока. При этом с помощью группы контактов К1 асинхронный двигатель сначала отключают от питания трехфазным переменным током, и только после этого, замыкают группу контактов К2 и подают постоянный ток. Величину постоянного тока регулируют сопротивлением rт (рисунок 1).

Рисунок 1 — Схема динамического торможения асинхронного двигателя

Само динамическое торможение асинхронного двигателя сопровождается следующими процессами и изменениями:

При отключении переменного тока, вращающееся магнитное поле перестает существовать. Далее подключают источник постоянного тока, который создает постоянное магнитное поле. Ротор по инерции продолжает крутиться теперь уже в постоянном магнитном поле, в обмотке ротора наводится ЭДС, ее частота прямо пропорциональна скорости вращения вала. Появление тока в обмотке ротора вызвано наличием вышеупомянутой ЭДС. Ток создает магнитный поток, который неподвижнен относительно статора. Взаимодействие результирующего магнитного поля АД и тока ротора создает тормозной момент. При этом асинхронный двигатель становится генератором; преобразовует кинетическую энергию вращающегося вала в электрическую, которая на обмотке ротора рассеивается в виде тепловой энергии. При переходе в режим динамического торможения частота и угловая скорость равны: f=0 w=0. Кривая динамического торможения должна проходить через начало координат и торможение происходит до полной остановки (рисунок 2).

Эффективность динамического торможения зависит от параметров:

— Величина постоянного тока, который протекает по статорной обмотке двигателя (чем больше ток, тем больше тормозной эффект);

— Величина сопротивления, введенного в цепь ротора. Эффективность торможения повышается путем комбинирования динамического торможения и торможения с введением сопротивлений в обмотку ротора (рисунок 2):

Рисунок 2 – Механическая характеристика динамического торможения асинхронного двигателя

Чем больше сопротивление введено в цепь ротора, тем выше эффективность торможения, то есть на кривой а1 изображена самая быстрая остановка двигателя при наибольшем сопротивлении — R1>R2>R3.

Популярные статьи  Заземление своими руками

— Схема соединения обмоток статора.

Величина магнитодвижущей силы (F) напрямую связана с понятием эффективность торможения, чем больше значение силы – тем эффективней происходит торможение,

F=I·W.

На рисунках, которые изображены ниже, стрелками показаны направления протекания постоянного тока по обмоткам, IW– ампер витки (так как количество витков в обмотках одинаково, то зависит значение только от величины тока). Векторные диаграммы иллюстрируют направления магнитодвижущих сил (F), сложив по правилам суммирования векторы, мы получим результирующий вектор, который обозначен жирной стрелкой.

Обмотка статора может быть соединена:

а) Схема соединения обмотки статора в звезду:

б) Схема соединения статорной обмотки в треугольник:

в) Соединение обмотки статора в звезду с закороченными двумя фазами:

г) Подключение звезда с разорванным нулем:

д) Подключение треугольник с закороченными фазами:

Схемы соединения а) и б) имеют наибольшее распространение, потому что не требуют переключения при торможении самих обмоток.

Необходимо подметить, что напряжение (U) источника постоянного тока должно быть малой величиной, потому что сопротивление обмотки статора мало. Ток выбирается из условия необходимого начального тормозного момента, обычно выбирают ~2Mном.

Преимущества режима динамического торможения:

— Относительная простота осуществления способа;

— Возможность торможения до полной остановки вала ротора;

— Высокая эффективность торможения, особенно при использовании комбинированного метода.

Основным недостатком является необходимость наличия источника постоянного тока.

Расчет величины тормозного сопротивления:

RT = 2·rф.ст + rт,

rт=RT — 2rф.ст,

где RT — полное сопротивление цепи источника постоянного тока,

rф.ст — сопротивление фазы статора.

Вышеприведенные формулы являются частным случаем (для понимания отношений величин сопротивления), когда постоянный ток протекает только по двум обмоткам статора, если же ток будет протекать по трем обмоткам, то коэффициент (количество фаз) перед сопротивлением фазы статора нужно соответственно изменить.

Советую вам прочесть статью про торможение противовключением, в которой подробно расписан данный вид остановки двигателя.

Недостаточно прав для комментирования

Классическое динамическое торможение

Эффективность такого режима работы зависит от расчета и значения следующих параметров:

  1. Величина тока, который подается через параллельную цепь на обмотки статора. Чем выше этот показатель, тем больше момент торможения,
  2. Величина сопротивления, которое вводится в цепь ротора. Чем выше по расчету сопротивление, тем быстрее тормозится двигатель,
  3. Величина магнитной движущей силы (МДС). Иногда ее называют ампер витками, поскольку расчет ведется по формуле F = I×W, где I – величина тока, а W – количество витков.

Обмотка статора при этом может подключаться как минимум пятью разными способами:

  1. Треугольником,
  2. Треугольником с закороченными фазами,
  3. Звездой,
  4. Звездой с закороченным нулем,
  5. Звездой с закороченными двумя фазами.

В каждом случае на основании векторной диаграммы ведется расчет МДС, тормозного сопротивления и напряжения цепи.

Пуск при пониженном напряжении цепи якоря

Ограничение пускового тока достигается также в случае питания цепи якоря при пуске от отдельного источника тока с регулируемым напряжением (отдельный генератор постоянного тока, управляемый выпрямитель). Обмотку возбуждения при этом необходимо питать от другого источника, с полным напряжением, чтобы иметь при пуске полный ток iв. Этот способ пуска применяют чаще всего для мощных двигателей, притом в сочетании с регулированием скорости вращения.

Советуем изучить — Инструмент для снятия изоляции с провода и кабеля

Пуск двигателей последовательного и смешанного возбуждения производится аналогичным образом. Схема пуска двигателя смешанного возбуждения ничем не отличается от схемы пуска двигателя параллельного возбуждения (рисунок 1), а схема пуска двигателя последовательного возбуждения упрощается за счет исключения параллельной цепи возбуждения.

Для изменения направления вращения (реверсирования) двигателя необходимо изменить направление тока в якоре (вместе с добавочными полюсами и компенсационной обмоткой) или в обмотке (обмотках) возбуждения.

Способы и схемы торможения электродвигателей

Торможение электродвигателя применяют, если необходимо сократить время свободного выбега и фиксацию механизма в конкретном положении. Существует несколько видов принудительной остановки устройства. Это механическое, электрическое и комбинированное. Механическое устройство представляет собой тормозной шкив, закрепленный на валу, с колодками. После отключения устройства колодки прижимаются к шкиву. За счет трения кинетическая энергия преобразуется в тепловую, т.е. происходит процесс торможения. Остальные способы и схемы торможения электрического двигателя будут рассмотрены далее в статье.

  • Способы электрического торможения электроприводов
  • Противовключения
  • Динамическая остановка электропривода
  • Режимы торможения моторов постоянного тока
  • Рекуперативное торможение электрических машин
  • Режим рекуперации в асинхронных электрических машинах
  • Комбинированный режим

Классическое динамическое торможение

Эффективность такого режима работы зависит от расчета и значения следующих параметров:

  1. Величина тока, который подается через параллельную цепь на обмотки статора. Чем выше этот показатель, тем больше момент торможения,
  2. Величина сопротивления, которое вводится в цепь ротора. Чем выше по расчету сопротивление, тем быстрее тормозится двигатель,
  3. Величина магнитной движущей силы (МДС). Иногда ее называют ампер витками, поскольку расчет ведется по формуле F = I×W, где I – величина тока, а W – количество витков.

Обмотка статора при этом может подключаться как минимум пятью разными способами:

  1. Треугольником,
  2. Треугольником с закороченными фазами,
  3. Звездой,
  4. Звездой с закороченным нулем,
  5. Звездой с закороченными двумя фазами.

В каждом случае на основании векторной диаграммы ведется расчет МДС, тормозного сопротивления и напряжения цепи.

Режим рекуперации в асинхронных электрических машинах

Режим рекуперации применяется не только в двигателях постоянного тока. Его можно применять и в асинхронных двигателях.

При этом такой режим возможен в следующих случаях:

  1. Если изменить частоту питающего напряжения при помощи частотного преобразователя. Что возможно при условии питания асинхронного электродвигателя от устройства с возможностью регулирования частоты питающей сети. Эффект торможения наступает при уменьшении частоты питающего напряжения. При этом переход в генераторный режим происходит, когда скорость вращения ротора становится больше номинальной (синхронной).
  2. Асинхронные машины, которые конструктивно имеют возможность переключения обмоток, для изменения скорости.
  3. В грузоподъёмных механизмах, где применяется силовой спуск. В них монтируется электромотор с фазным ротором. В этом случае скорость регулируется с помощью изменения величины резистора, подсоединяемого к обмоткам ротора. Магнитный поток начинает обгонять поле статора, а скольжение становится больше 1. Электромотор переходит в режим генератора, вырабатываемая электроэнергия возвращается в сеть, возникает тормозной эффект.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: