Высоковольтные конденсаторы

Пленочные высоковольтные конденсаторы

Когда появились полипропиленовые высоковольтные конденсаторы типа ТРС, проектирование преобразовательной техники существенно изменилось.

Современные технологии способны обеспечить конденсаторы необходимыми и уникальными свойствами:

  • высокой надежностью;
  • способностью сохранять работоспособность до 5 % изначальной емкости благодаря технологии самовосстановления полипропиленовой пленки при аварии;
  • небольшими размерами при высоких значениях емкости и напряжения, а также максимальных значениях силы тока на один конденсатор;
  • долгим сроком эксплуатации при гораздо более неблагоприятных условиях окружающей среды благодаря наполнению неактивным маслом (в то время, как аналогичные конденсаторы заполняются газом);
  • возможностью использования конденсаторов с индуктивностью в 40 нГн в преобразовательных приборах на основе IGBT технологий.

Преобразователя напряжения 1,5 В/-9 В

Рис. 8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис. представляет собой однотактный релаксационный генератор с емкостной положительной обратной связью (С2, C3). В коллекторную цепь транзистора VT2 включен повышающий автотрансформатор Т1.

В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке.

При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и C3, которые одновременно являются делителем напряжения обратной связи.

Когда транзистор VT2 закрывается, конденсаторы С2 и C3 в течение паузы разряжаются через часть обмотки трансформатора, перемагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2.

При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается.

Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток. Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

Краткое описание

Импульсные конденсаторы КПИ и КПИ1 предназначены для работы в электрофизических и технологических установках в импульсном режиме с частотой повторения импульсов до 1 Гц. Конденсаторы разработаны на напряжение 5—200 кВ и имеют пластмассовый морозостойкий корпус. Конденсаторы могут работать как в вертикальном, так и в горизонтальном положениях. Переполюсовка напряжения в конденсаторе при разряде на нагрузку не более 10%. Ресурс конденсатора, указанный в таблице, соответствует такому типу разряда, при вероятности безотказной работы, равной 0,90. Однако конденсаторы могут успешно работать и при ярко выраженном колебательном характере разряда. В этом случае для сохранения ресурса необходимо снижать зарядное напряжение. Внешний вид и габаритные размеры конденсаторов КПИ приведены на рисунках ( 1 ) и ( 2 ).

Структура условного обозначения:

Предельно допустимые климатические воздействия   

Конденсаторы типа КПИ и КПИ1 относятся по климатическому воздействию к группе УХЛ 4. Номинальные значения климатических факторов по ГОСТ 15543-70 и ГОСТ 15150-69, в частности, значения рабочей температуры находятся в диапазоне +1 ÷ +35°С. Окружающая среда невзрывоопасная, не содержащая токопроводящей пыли и агрессивных газов в концентрациях, снижающих параметры конденсатора в недопустимых пределах.

Предельно допустимые механические воздействия      

Конденсаторы выдерживают воздействие вибрационных нагрузок в диапазоне частот 5 ÷ 200 Гц с амплитудой 0,5 мм и ускорением 19,6 м/с2; воздействие ударных нагрузок с ускорением 147 м/с2 и длительностью удара 5 ÷ 10 мс.

Величина емкости конденсаторов, приведенных в таблицах 1 и 2, может отклоняться в пределах ±10% от номинала. Под индуктивностью имеется в виду собственная индуктивность конденсатора. Максимальный ток для конденсаторов КПИ составляет 100 кА, а для КПИ1 – 50 кА. Тангенс угла диэлектрических потерь при частоте ≤ 50 Гц равен 0,002÷0,003, что существенно меньше, чем в бумажно-масляных импульсных конденсаторах. Ресурс указан для случая разрядки конденсаторов на нагрузку с переполюсовкой напряжения (реверсом напряжения) не более 10% и температурой окружающей среды +200°С. При отклонении условий эксплуатации  от  указанных  в  таблице  ресурс  может  быть приближенно рассчитан по формуле N = N0xK1xK2xK3xK4,  где N0 – номинальный (табличный) ресурс; К1, К2, К3, К4 – коэффициенты долговечности.

Например, пусть конденсатор КПИ-50-5 (таблица 1)эксплуатируется при зарядном напряжении Uз = 30 кВ, максимальном обратном напряжении 18 кВ, при температуре 30°С и времени удержания напряжения после зарядки конденсатора равном 15 с. Необходимо найти ресурс N, соответствующий данным условиям эксплуатации конденсатора. Воспользуемся формулой  N = N0xK1xK2xK3xK4. Номинальный ресурс N0 найдем из таблицы 1. Он равен 6·104 циклов заряд-разряд. Коэффициент К1  при Uз/U0 = 35/50 = 0,7. Он равен 28.  при Т = 30°С находится К2 = 0,5.  при Uобр/Uз = 18/30 = 0,6 находится К3 = 0,1. Коэффициент К4 = 0,52,  при tуд = 20 с. По формуле находим эксплуатационный ресурс: N = 6·104 x 28 x 0,5 x 0,1 x 0,52 = 4,37·104 циклов.

Популярные статьи  Что такое фаза и ноль

Импульсный конденсатор

Импульсные конденсаторы выпускают на напряжение от 250 В до 200 кВ с энергией заряда до нескольких тысяч джоулей в единице для работы при апериодическом или колебательном разряде с частотой следования импульсов от одного в минуту до сотен герц.

Импульсные конденсаторы выполняют в металлических и изоляционных корпусах преимущественно прямоугольной формы. Изоляционные корпуса применяют для конденсаторов напряжением 100 кВ и выше.

Импульсные конденсаторы используются все более широко, а номенклатура их постоянно увеличивается.

Импульсные конденсаторы в бакелитовых цилиндрах на напряжение от 40 до ПО кв применяют в фильтрах высоковольтных выпрямителей ( промышленных и медицинских рентгеновских установках) и различного рода импульсных установках.

Основные технические данные импульсных конденсаторов.

Импульсные конденсаторы в металлических корпусах ИМ 0 5 — 250 и ИМ 3 — 100 по конструкции не отличаются от низковольтных косинусных конденсаторов I габарита.

Импульсные конденсаторы в прямоугольных стальных корпусах с одним изолированным выводом ( рис. 4, § 3) изготовляются также в мастерских при ЛПИ и ХПИ небольшими сериями для импульсных генераторов напряжения и тока. В ЛПИ для изготовления этих конденсаторов применяется кабельная бумага в листовом виде, и сборка секций ведется вручную. Рабочая напряженность для кабельной бумаги, пропитанной маслом, принята равной 52 кв / мм.

Вольт-секундная характеристика разрядника типа РТВ на 6 — 35 кВ. Волна 1 5 / 40 мкс отрицательной полярности.| Разрядник РТВ.

Импульсные конденсаторы предназначены для работы в различных импульсных схемах.

Импульсные конденсаторы применяются в значительно более скромных, однако быстро возрастающих масштабах. Они работают в режиме чередующихся относительно медленных зарядов и быстрых разрядов на цепь с очень малым сопротивлением. В зависимости от назначения всей установки интервалы между разрядами могут составлять от сотых долей до нескольких десятков минут. При этом время и характер разряда ( апериодический, колебательный с разным затуханием) также могут меняться в больших пределах.

Фильтровые конденсаторы.

Импульсные конденсаторы работают в режиме медленный заряд — быстрый разряд, что и определяет электрические и конструктивные особенности данной группы конденсаторов.

Конденсатор ИМ 300 — 0 4 ( 01350, Н-1076.| Конденсаторы ИМ 300 — 0 4 в схеме каскадного генератора.

Импульсные конденсаторы ИМ 50 — 3 ( рис. 27) предназначены для установки в различных схемах генераторов импульсных токов. Их выемная часть состоит из девяти пакетов, соединенных параллельно. Секции в пакетах имеют смешанное соединение. Средние точки пакетов соединены между собой и выведены через изоляционную ( из гетинакса или винипласта) крышку при помощи выводной шпильки. Крайние точки пакетов соединены с корпусом и при помощи выводных шпилек также выведены на крышку корпуса. Уплотнение крышки с корпусом и выводов осуществляется прокладками из маслостойкой резины. Выемная часть конденсатора отличается усиленной механической прочностью всех токоведущих частей.

Фильтровые конденсаторы.

Отличия импульсного блока питания от обычного трансформаторного

Схема трансформаторного стабилизированного источника питания.

Традиционный «трансформаторный» блок питания строится по схеме: трансформатор — выпрямитель с фильтром — стабилизатор выходного напряжения (может отсутствовать). Схема несложна и отработана годами, но у нее есть существенный недостаток – при увеличении мощности опережающими темпами растут габариты и вес.

В первую очередь растут размеры и масса трансформатора. Для повышения тока надо увеличивать сечение обмоток, но главный вклад в массогабаритные характеристики вносит сердечник. Не вдаваясь в физические подробности, можно отметить, что эту проблему можно обойти, увеличив частоту, на которой происходит трансформация. Чем выше частота, тем меньшим сердечником можно обойтись. Не зря в авиации и кораблестроении используются электросети на частоту 400 Гц. Многие элементы получаются гораздо легче и компактнее. Но в быту негде взять повышенную частоту. 50 Гц в розетке – все, что доступно потребителю. Поэтому блоки питания на большие токи строят по другому принципу. В них переменное напряжение сети выпрямляется, а затем из него «нарезаются» импульсы более высокой (до нескольких десятков килогерц) частоты. За счет этого трансформатор получается маленьким и легким без потери мощности. Это главное, чем отличается любой импульсный блок питания от обычного.

Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.

В видео-сравнение линейного и импульсного блоков питания.

К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.

Испытания преобразователя в действии

Инвертор способен выдерживать 10 минут непрерывной работы, после чего трансформаторы начинают требовать охлаждения. Транзисторы не нагреваются слишком сильно – радиаторы остаются почти холодными. Большая часть тепла выделяется на выпрямителе моста, который может неплохо нагреваться – на нем тоже большой радиатор.

Инвертор способен выдавать большие разряды благодаря значительной эффективности тока. Максимальная длина растянутой молнии составляет чуть более 20 см.

Также покажем сигналы осциллограмм: Первый это синусоида на LC-схеме без зажженной дуги. Последний скриншот показывает последовательность импульсов на одном из полевых ключей.

Где используются

Высоковольтные накопители заряда применяются в схемах таких имеющих большую энергоемкость устройств, как:

  • умножители напряжения,
  • генераторы Маркса,
  • катушки Тесла,
  • высокочастотные импульсные установки,
  • радиолюбительская и профессиональная приемо-передающая аппаратура,
  • пусковые блоки трехфазных электродвигателей большой и средней мощности.
Популярные статьи  Опасен ли теплый пол, если треснула плитка в ванной?

Катушка Тесла

Высоковольтные накопители заряда, в отличие от используемых при более низких значениях напряжения аналогов, являются очень опасными для человеческого организма устройствами. Так, заряженный накопитель при контакте с неаккуратным обращением может привести к серьезной электротравме, повреждению кожных покровов и внутренних органов. Мощные устройства данного вида могут накапливать заряд, прохождение которого через человеческое тело крайне опасно.

Конденсаторы для установок промышленной частоты

К данному виду относят устройства для увеличения коэффициента мощности в установках переменного тока с определенной, постоянной частотой 50 Гц. Такие приборы выполняют как для внутреннего, так и для применения вне помещения при температуре не более 50 °С. Они выполняются как в однофазном, так и трехфазном исполнении. При трехфазном исполнении силовой косинусный конденсатор соединяется в виде треугольника. Иногда применяют предохранитель для защиты от пробоя.

Автоматическое прерывание питания конденсаторов при перегрузке силовой сети по току за счет повышенного напряжения обеспечивает специальное электротоковое реле. Защиты от токов короткого замыкания добиваются за счет установки плавких предохранителей. В схемах управления для включения и отключения применяют магнитные пускатели большой величины, установки оснащаются возможностью регулировки и индикаторами рабочего состояния.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Высоковольтные конденсаторы

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Высоковольтные конденсаторы

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Высоковольтные конденсаторы

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

Высоковольтные конденсаторы

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение

Высоковольтные конденсаторы

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Высоковольтные конденсаторы

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

Высоковольтные конденсаторы

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Высоковольтные конденсаторы

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Высоковольтные конденсаторы

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией

Высоковольтные конденсаторы

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Высоковольтные конденсаторы

Возможно, вам также будет интересно

Конструкция тонкопленочного резистора показана на рис.1. В отличие от печатного метода изготовления резисторов, применяемого при производстве толстопленочных резисторов, тонкопленочные резисторы изготавливаются с помощью напыления на керамическое основание слоя проводящего материала (обычно нихромовой пленки). Благодаря технологии напыления основание покрывается однородной, очень тонкой пленкой (толщина ее составляет около 50 нм)с очень малым отклонением сопротивления от номинала (до

Снижение энергопотребления электронной аппаратуры — постоянная задача для разработчиков. Особенно важным низкое энергопотребление является для аппаратуры, получающей питание от батарей или других источников питания ограниченной мощности: датчиков охранно-пожарной сигнализации, портативных измерительных и медицинских приборов, звукозаписывающих устройств, аппаратуры связи. Одна из возможностей для решения этой задачи — использование электронных компонентов, в том числе операционных усилителей, с

В современной российской технической периодике имеется большое количество описаний различных устройств управления — от реле автоматики до универсальных технологических контроллеров. Все эти устройства, как правило, состоят из типовых функциональных узлов: преобразователей уровней дискретных сигналов, АЦП, интерфейса связи с компьютером, системных часов, релейных выходов. Эти узлы вполне возможно объединить в логический модуль, а далее строить систему управления из этих модулей, конфигурируя их программно. Такой подход широко распространен в мире, а в последние годы и на российском рынке активно предлагаются семейства логических модулей Siemens LOGO!, Mitsubishi ALFA, Moeller EASY. В сочетании с модулями расширения эти устройства являются гибким средством для решения относительно несложных задач управления.

Общие сведения

В последние годы определенное развитие получили новые электротехнологии, основанные на свойствах сильноточного импульсного разряда, протекающего через катушку индуктивности, газовую или жидкую среды.  К указанным выше технологиям можно отнести магнитную штамповку, дробление породы, очистку металлических отливок и пр. Все большее развитие получают лазерные технологии, которые используются как в промышленности, так и в медицине.

Популярные статьи  Могут ли духовка и варочная панель отключаться отдельными автоматами?

В этих технологиях в качестве одного из основных элементов оборудования применяются импульсные высоковольтные конденсаторы, к характеристикам которых предъявляются все более высокие требования, заключающиеся в увеличении удельной энергии, ресурса, рабочей частоты конденсаторов, снижении tgδ, собственной индуктивности и внутреннего сопротивления. Удовлетворить эти требования полностью, применяя традиционную для импульсных конденсаторов бумажно-масляную изоляцию, не представляется возможным из-за сравнительно высоких диэлектрических потерь.

Нами были проведены новаторские работы по созданию серий пленочных импульсных конденсаторов с удельной энергией 0,1; 0,2; 0,3 Дж/г, малоиндуктивных сильноточных конденсаторов и малоиндуктивных высокочастотных высоковольтных конденсаторов для лазерных технологий.

Важной частью этих работ являлись исследования направленные на более глубокое понимание физических механизмов, определяющих старение пленочных конденсаторов в процессе их эксплуатации при высокой напряженности электрического поля, составляющей 250…300 кВ/мм. Проведенные исследования позволили с более обоснованных позиций подойти к разработке технологии изготовления пленочных конденсаторов высокой удельной энергии

Основные черты этой технологии определились в процессе исследований и заключаются в следующем:1) использовании оптимального коэффициента запрессовки секций в пакете и устранении возможности «перепрессовки»;2) устранении источников дополнительного загрязнения пленки при изготовлении секций и сборке сухих пакетов (намотка секций в «чистой» комнате, соблюдения производственной гигиены и т.д.);3) устранении возможного загрязнения изоляции конденсатора в процессе его пропитки за счет перехода от группового метода пропитки к индивидуальному и исключении повторного использования жидкости после очистки ее сорбентами;4) тщательной вакуумной сушке пленочной изоляции конденсатора в течение 48 часов при температуре 95-105°С;5) тщательной вакуумно-термической подготовке заливаемой жидкости с целью устранения растворенной влаги;6) отказа от применения стабилизирующих эпоксидных добавок.

Следует отметить, что указанная выше технология в целом направлена на устранение из конденсаторной изоляции пылевидных загрязнений, влаги и стабилизирующих добавок. Подобные требования к технологии  изготовления конденсаторов не являются новыми. Однако новым является то, что жесткость соблюдения этих требований при изготовлении импульсных пленочных конденсаторов, как показали наши исследования, на порядок выше, чем при изготовлении конденсаторов с бумажно-касторовой изоляцией.

На основе проведенных исследований и разработанной технологии была создана серия импульсных конденсаторов типа КПИ и КПИ1.

Виды ВВ конденсаторов

В зависимости от конструктивных особенностей и материала диэлектрика данные устройства бывают керамическими, бумажными, металлизированными, масляными, вакуумными, фазосдвигающими, подстроечными, биполярными.

Керамические изделия

Керамические импульсные конденсаторы – накопители, в которых в качестве диэлектрика используется специальная керамика. В отличие от низковольтных аналогов, такие кондеры работают при напряжении от 0,2 до 50 кВ и частоте тока от 0,5 до 10 кГц. При этом емкость их лежит в диапазоне от 2-2,5 до 25 нф. Используются они в цепях постоянного, переменного или пульсирующего тока, сетевых фильтрах как X/Y конденсаторы, а также высокочастотных схемах для устранения помех, поглощения шумов.

Наиболее часто применяемыми марками данных устройств являются следующие:

  • К75-25 (15);
  • К15-4;
  • К15-5;
  • К15-10;
  • КВИ-3.

Керамический накопитель заряда КВИ-3

Металлизированные и бумажные (плёночные)

Имеющие схожую конструкцию накопители заряда данных видов состоят из:

  • Диэлектрика – конденсаторной бумаги, полимерной пленки из таких материалов, как полипропилен, полиэстер, поликарбонат.
  • Обкладок – фольги или тонкого слоя металла, нанесенного на пленочный полимерный диэлектрик вакуумным напылением.
  • Двух контактов (выводов), припаянных к обкладкам.

Наиболее востребованными среди пленочных металлизированных устройств являются модели с рабочим напряжением 16 и 25 кВ и емкостью 2200 пФ (2,2нФ).

Накопители с бумажным диэлектриком, в отличие пленочных металлизированных аналогов, имеют более низкое рабочее (номинальное) напряжение: от 0,2 до 15 кВ (200-1500 В). Однако при этом их емкость колеблется от 0,1 до 2 мкФ (100000 – 2000000 пФ или 100-2000 нФ). Как и аналоги с керамическим диэлектриком, они способны работать с токами частотой от 50 до 10 000Гц (10кГц).

Применяют пленочные и бумажные высоковольтные конденсаторы в выпрямительных и фильтрующих цепях, электронных умножителях и удвоителях напряжения.

На заметку. В бумажных накопителях заряда допускается отклонение ёмкости накопителя от номинального значения данной характеристики не более, чем на 20%.

Конденсатор мбгч-1

Масляные и вакуумные образцы

Наиболее часто применяемый и востребованный вакуумный высокочастотный конденсатор переменной емкости марки КП 1-4 представляет собой устройство, состоящее из следующих частей:

  • стеклянный баллон, внутри которого путем откачки воздуха создан высокий вакуум;
  • неподвижный цилиндрический электрод;
  • гофрированный подвижный электрод («гармошка»);
  • привод подвижного электрода, под большим усилием перемещающий «гармошку» внутрь неподвижного электрода;
  • круглая ручка и окошко со шкалой для регулировки емкости накопителя.

Емкость данного накопителя колеблется от 10 до 500пФ, рабочее напряжение – до 10кВ. Применяется такое устройство в радиолюбительской передающей аппаратуре в диапазоне частот до 30-80 МГц в качестве контурных, блокировочных, фильтровых, а также разделительных конденсаторов.

Масляный накопитель заряда самой распространенной марки КБГ-МН состоит из:

  • металлического прямоугольного корпуса;
  • скрученного в рулон полимерного или бумажного диэлектрика;
  • обкладок из алюминиевой фольги, разделенных диэлектриком;
  • двух выводов, припаянных к обкладкам и соединенным с контактами на крышке корпуса.

Скрученный рулон из диэлектрика и обкладок находится в специальном масле, заполняющем корпус. Емкость устройства данной марки составляет 0,5 мкф (500нФ), рабочее напряжение – 600 В (0,6кВ).

На заметку. В высоковольтных накопителях заряда достаточно высокое содержание различных драгметаллов: палладия, платины, технического серебра.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: