Зависит ли сопротивление между уэ и катодом тиристора от полярности напряжения?

Защита тиристоров

Тиристоры являются приборами, критичными к скоростям нарастания прямого тока diA/dt и прямого напряжения duAC/dt. Тиристорам, как и диодам, присуще явление протекания обратного тока восстановления, резкое спадание которого до нуля усугубляет возможность возникновения перенапряжений с высоким значением duAC/dt. Такие перенапряжения являются следствием резкого прекращения тока в индуктивных элементах схемы, включая малые индуктивности монтажа. Поэтому для защиты тиристоров обычно используют различные схемы ЦФТП, которые в динамических режимах осуществляют защиту от недопустимых значений diA/dt и duAC/dt.

В большинстве случаев внутреннее индуктивное сопротивление источников напряжения, входящих в цепь включенного тиристора, оказывается достаточным, чтобы не вводить дополнительную индуктивность LS . Поэтому на практике чаще возникает необходимость в ЦФТП, снижающих уровень и скорость перенапряжений при выключении (рис. 7).

Рис. 7. Типовая схема защиты тиристора

Для этой цели обычно используют RC-цепи, подключаемые параллельно тиристору. Существуют различные схемотехнические модификации RC-цепей и методики расчета их параметров для разных условий использования тиристоров.

Для запираемых тиристоров применяются цепи формирования траектории переключения, аналогичных по схемотехнике ЦФТП транзисторов.

10300

Закладки

Последние публикации

Коллектив Курскэнерго торжественно отметил День Победы

Вчера, в 16:49

21

О терминологии в стандартах

6 мая в 16:58

100

Кузбасские энергетики поздравили своих ветеранов с 9 мая

6 мая в 12:05

50

Сотрудники Удмуртэнерго благоустроили мемориалы героям Великой Отечественной войны

6 мая в 11:33

49

Босния и Герцеговина выбирает российское оборудование

4 мая в 18:57

61

Переводная статья в журнале «ЭнергоЭксперт»

4 мая в 12:31

125

Сотрудники Курскэнерго приняли участие в творческом фестивале

4 мая в 10:46

56

В преддверии Дня Победы в Удмуртэнерго поздравили ветеранов отрасли с праздником

3 мая в 11:48

60

Антропогенный (!?) менеджмент

1 мая в 13:37

169

МедКомплекс А.В.К. расширяет сотрудничество с российскими производителями медицинского оборудования и мебели

29 апреля в 17:16

79

Самые интересные публикации

Новая газотурбинная ТЭЦ в Касимове выдаст в энергосистему Рязанской области более 18 МВт мощности

4 июня 2012 в 11:00

230384

Выключатель элегазовый типа ВГБ-35, ВГБЭ-35, ВГБЭП-35

12 июля 2011 в 08:56

49011

Выключатели нагрузки на напряжение 6, 10 кВ

28 ноября 2011 в 10:00

39093

Распределительные устройства 6(10) Кв с микропроцессорными терминалами БМРЗ-100

16 августа 2012 в 16:00

23995

Элегазовые баковые выключатели типа ВЭБ-110II

21 июля 2011 в 10:00

21423

Признаки неисправности работы силовых трансформаторов при эксплуатации

29 февраля 2012 в 10:00

19742

Оформляем «Ведомость эксплуатационных документов»

24 мая 2017 в 10:00

17680

Правильная утилизация батареек

14 ноября 2012 в 10:00

14514

Проблемы в системе понятий. Отсутствие логики

25 декабря 2012 в 10:00

12814

Порядок переключений в электроустановках 0,4 — 10 кВ распределительных сетей

31 января 2012 в 10:00

12293

Характеристики

К основным характеристикам можно отнести следующие:

  • Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение — наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Схема включения

Зачем нужны тиристоры, можно понять, разобравшись в их принципе работы. Для этого есть смысл рассмотреть включение элемента в простейшей схеме. Тиристор в ней используется как электронный ключ.

Зависит ли сопротивление между уэ и катодом тиристора от полярности напряжения? К аноду тиристора подсоединяется лампочка L, служащая нагрузочным сопротивлением. К ней через кнопку К2 подключается положительная клемма источника питания GB, а его минус подводится к катоду полупроводникового элемента. Подача тока на управляющий электрод выполняется через ограничительный резистор R и кнопку K1.

При замыкании переключателя К2 к аноду и катоду полупроводника будет приложено напряжение, соответствующее величине ЭДС источника питания. При этом прибор будет заперт, ток через него не потечёт, а лампочка не загорится. Чтобы в цепи VS – L появился ток, понадобится отпереть тиристор.

Дальнейшее нажатие кнопки K1 никоим образом не будет влиять на состояние схемы. Для того чтобы потушить лампочку, понадобится разорвать цепь кнопкой K2 или отсоединить источник питания. Но при этом тиристор может закрыться и при снижении напряжения на аноде до определённой величины, определяемой параметрами тиристора.

Таким образом, тиристор — это полупроводниковый элемент, использующийся в схемах как электронный ключ. Это возможно благодаря свойствам p-n переходов. При этом, осуществляя коммутацию больших токов, сам прибор имеет небольшие габариты, а его корпус может выдерживать значительную тепловую мощность. Но всё же для предотвращения его повреждения тепловым пробоем часто совместно с элементом используется теплоотвод, представляющий собой, в зависимости от мощности нагрузки, простую алюминиевую пластинку или массивного вида радиатор.

Как вам статья?

Мне нравится1Не нравится

Зависит ли сопротивление между уэ и катодом тиристора от полярности напряжения? Павел Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать Пишите свои рекомендации и задавайте вопросы

Способы проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании, необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние, необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение, которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры, в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки, во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования, лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует симистор, одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.

тестер

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получаетсяс самого начала, в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.

проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально, мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение, поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий, дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие приборапроизойдет снова, если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Возможно, вам также будет интересно

Воздействие электромагнитного импульса (ЭМИ) естественного и искусственного происхождения на электронные компоненты приводит к изменению их параметров за счет как непосредственного поглощения ими энергии, так и воздействия на них наведенных в цепях импульсов токов и напряжений. По данным фирмы General Semiconductor, потери промышленности США от воздействий перенапряжений составляют более $10 млрд в год. Учитывая сроки эксплуатации

В статье представлены драйверы реверсируемых двигателей постоянного тока общегоназначения производства японской компании ROHM. Японская компания ROHM представляет на рынке электронных компонентов драйверы реверсируемых двигателей постоянного тока общего назначения на основе технологии широко-масштабной интеграции LSI. Представленные драйверы могут быть трех видов: драйвер управления одним электродвигателем, двумя электродвигателями без стабилизации скорости, а также драйвер управ- ления одним

Компания Frontline PCB Solutions представила пользователям свой новый продукт InCAM.

Техника безопасности

По технике безопасности любые тестирования и конструирования с обычными и высоковольтными диодами нельзя проводить в сырых и влажных комнатах. Кроме того, нельзя в момент измерений делать практически никакие переключения измерений и делать замеры, если величины напряжения с силой тока больше обозначенных в мультиметре

Популярные статьи  Схема подключения датчика движения к прожектору

Обратите внимание! Чтобы проверка была без трудностей, успешной и не опасной, по проверенной методике радиолюбителей, необходимо использовать щупы, имеющие исправную изоляцию

Техника безопасности

В целом, транзистор — клапан, уменьшающий сопротивление и позволяющий идти электрическому току дальше по цепи, передвигаясь с коллекторного устройства к эмиттеру. Элемент, отвечающий за работу электроприборов. Он бывает биполярным, изолированным и полевым. Проверять его с помощью мультиметра без выпаивания можно, как и делать ремонт, соблюдая представленную выше инструкцию.

Вам это будет интересно Все об напряженности электрического поля

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.
Схема проверки тиристора

Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород

Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания

Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Регулятор мощности

В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.

На днях понадобился мне простой регулятор мощности, так как для демонтажа деталей из старых плат я использую советский 80 ваттный паяльник, и мне, в такую жару за окном, надоело, через десять минут его работы, обливаться потом, так как он разогревается до безумия, что деревянную ручку уже невозможно спокойно держать в руках.

Популярные статьи  Флюс для пайки: особенности, виды, советы

Основными требованиями к схеме регулятора мощности было: легкость сборки и минимум доступных деталей, которые есть у каждого радиолюбителя в наличии. В итоге на просторах Интернета были найдены две вариации схемы из одного и того же набора деталей. Обе схемы регулятора мощности проверены и работают идентично.

В оригинальной схеме вместо диодного моста использовались 226е диоды, я же поставил диодный мост КЦ402Б.

ристор можно использовать любой имеющийся, смотрите только его характеристики, так как от них зависит максимально допустимая нагрузка и рабочее напряжение. В одном таком регуляторе мощности я использовал тиристор КУ202Н, а в другом, более мощный, Т122-25-6. Конденсатор можно брать до 470мкФ, а переменный резистор 5-10кОм. Постоянный резистор должен быть минимум МЛТ-2, он ощутимо греется в процессе работы регулятора мощности

Так что если Вы используете корпус для данного устройства, обращайте внимание, чтобы резистор не касался пластиковые его частей

Данный регулятор мощности можно использовать как приставку для разных целей и устройств. Например, он же является простым регулятором яркости светильника и т.д.

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: