Виды солнечных батарей: сравнительный обзор

Сравнение всех видов солнечных батарей их отличия

В Европе активно развивают альтернативную энергетику, понимая ее безопасность и перспективность такого источника электроэнергии, как солнечные батареи.

Желая организовать отопление жилых зданий ил промышленных за счет энергии земного светила, постройки оснащают именно ими.

Эти устройства год от года становятся более совершенными, увеличивается их КПД, они становятся готовыми к работе в темное время и в малосолнечных областях.

Чтобы не ошибиться с выбором солнечных батарей, нужно знать достоинства каждого вида и отличия, потом что для конкретных климатических зон применяются разные виды таких устройств.

Принцип функционирования

Большая часть этих экологических солнечных устройств в действительности не что иное, как фотоэлектрический преобразователь, у которого на границе p-n перехода возникает эффект электрогенерации.

Основой себестоимости солнечных батарей является стоимость кремниевые пластины. Но, для того, чтобы они служили круглые сутки источником электрической энергии, одних пластин кремниевых недостаточно – придется приобрести оборудование дополнительное и, прежде всего, достаточно дорогие аккумуляторные батареи.

Устройство

Составляют панель солнечную два кремниевых элемента, отличающиеся по своим свойствам. В одном из них возникает под воздействием света недостаток частиц с отрицательным зарядом –электронов, в другом они присутствуют в избытке.

На каждой из пластин имеются медные полоски, проводящие ток, которые соединяют с преобразователями напряжения.

У солнечной батареи, предназначенной для промышленного применения, есть много фотоэлектрических ячеек, прошедших стадию ламинирования. Они между собой скреплены и закреплены на подложке гибкой или жесткой.

КПД

Эффективность солнечных батарей определяется во многом стадией очистки кремния, который используется в производстве, и ориентацией кристаллов в нем. Эти характеристики и стремятся улучшать разработчики.

Ежегодно значение КПД удается увеличивать (в разных видах на неодинаковую величину), благодаря миллиардным инвестициям, вкладываемым в исследования фотогальванических элементов.

Тем не менее, эффективность остается недостаточной для массового применения солнечных батарей.

Сложности

Основной проблемой является очистка кремния, точнее стоимость этого процесса, а также ориентирование кристаллов в пределах панели в одном направлении.

Могут использоваться для изготовления преобразователей полупроводниковых помимо кремния иные элементы — индий, например. Их применение не сказывается на принципе функционирования — он не меняется.

Типы

Классификация промышленных панелей солнечных происходит по типу рабочего слоя и конструктивным особенностям. Различают панели жесткие и гибкие.

Последние занимают все более широкую нишу благодаря универсальной установке: он и легко устанавливаются на любые поверхности, в том числе на вертикальны – фасады зданий. При этом они совершенно не портят архитектуру, а напротив привносят в не некую изюминку.

Как правило, действительные параметры солнечных батарей несколько ниже заявленных производителем, поэтому, прежде чем выбирать, желательно увидеть воочию уже действующий проект.

По типу фотоэлектрического слоя их подразделяют на:

  • кремниевые. К ним относятся поли — , монокристаллические и аморфные;
  • теллурий-кадмиевые. Их собирают на основе индия, меди и галлия;
  • полимерные;
  • органические;
  • с использованием арсенида галлия;
  • комбинированные и многослойные.

Не все перечисленные виды интересны потребителю, а лишь кристаллические, несмотря на то, что их КПД ниже некоторых других (правда, более дорогих, отчего и менее распространенных).

Процесс изготовления кремниевых конструкций

Для получения солнечных панелей применяют кремний, получаемый при перемалывании кристаллов кварца, огромными запасами которого славится Урал и в Сибирь. Именно из-за безграничных запасов это направление считается очень перспективным. Сегодня за кристаллическими и аморфными панелями почти 80% рынка.

Кремниевые монокристаллические панели

Описание

Их легко узнать при визуальном осмотре. В углах элементов хорошо различимы квадратики белого цвета.

Для самих же пластин характерна поверхность однородного синего цвета. Кремний в этом случае требует высокой очистки. Понятно, что технологический процесс по очистке его отличается дороговизной. Затратным является и процесс, результатом которого является ориентирование кристаллов в одном направлении.

Важно: Характеристики рабочего слоя наибольший КПД обеспечивают лишь в случае, когда лучи падают на панели пол прямым углом.

КПД у них достаточно высокий, но и цена тоже самая большая, в сравнении с другими видами пластин.

Обратите внимание

Солнечным панелям монокристаллическим большой площади необходимы поворотные устройства. В таком виде они считаются идеальным решением для пустынь. Там их производительность наилучшая.

Работать монокристаллические панели не смогут без дополнительного оборудования, способного поворачивать конструкцию вслед за движущимся солнцем, стараясь, чтобы на лучи падали на пластину максимально близко к прямому углу.

Из выращенного в условиях производства кристалла, имеющего вид цилиндра, вырезаются слои. Вот почему у готовых блоков углы скруглены.

Преимущества

  • Высокий КПД – от 17 до 25 процентов;
  • Небольшая площадь для установки;
  • Период эксплуатации достигает 25 и более лет.

Недостатки

Их немного:

  • достаточно высокая цена;
  • небыстрая окупаемость;
  • поверхности панелей слишком чувствительны к различным загрязнениям. Поскольку свет хуже рассеивается на покрытой пылью панели, то и эффективность ее резко падает;
  • необходимость в прямых лучах требует их размещения только на открытых местах и высоко от земли.

Чем область ближе расположена к экватору, тем большее там количество в году солнечных дней. И это вид панелей, использующих энергию солнца, наиболее предпочтительный.

Поликристаллические

Описание

Все кремниевые устройства слишком реагируют на перегрев. Температура, рекомендуемая для измерения электрогенерации, составляет 25 градусов. Даже при ее увеличении всего на градус производительность уменьшается на 0,5%.

Поликристаллические конструкции также легко определить визуально, поскольку окрас их неравномерный, что связано с разной ориентированностью кристаллов, обеспечивающей высокое КПД в рассеянном свете. Хотя значение его меньше, чем в панелях однонаправленных, в непогоду наибольшей эффективностью отличаются именно они.

Чистота кремния намного ниже, чем у рассмотренных выше, также допускается присутствие примесей и инородных включений. Это снижает себестоимость. Для этого вида панелей металл просто разливается в формы. Затем, используя специальные приемы, формируют кристаллы, направленность которых контролировать не нужно.

Остывший кремний режут на слои, обрабатывая их по специальному алгоритму.

Эти батареи не нуждаются в непрерывном ориентировании на солнце, следовательно, для их установки пригодны крыши зданий.

Достоинства аморфного кремния в полной мере раскрываются в тени и с наступлением облачных дней и практически незаметны в солнечную погоду.

Не нужны им и поворотные механизмы, поскольку крепятся они стационарно.

Стоит такая разновидность панелей меньше, чем ориентированные. Эффективность их падает на 20% после 20-летнего использования.

Недостатки

Они, понятно, есть:

  • Более низкий КПД;
  • Необходимо большая площадь для монтажа.

В последние годы, благодаря новым исследованиям и появляющимся технологиям, КПД неуклонно растет и у некоторых панелей достигает 20%.

Панели из аморфного кремния

Описание

Механизм их изготовления совершенно иной, чем у кристаллических фотоэлементов. Для них используется гидрид вместо чистого кремния. Его нагревают до парообразного состояния. Когда пары достигают подложки, они осаждаются на ней. Затраты на изготовления снижаются, а кристаллы не образуются (в понимании классическом).

Полученные фотоэлементы в основе имеют полимерную подложку гибкую либо жесткий стеклянный лист.

Разработано уже 3 поколения таких панелей, анализ характеристик которых дает право говорить о растущем КПД. Первые образцы отличались эффективностью, едва достигавшей 5%, у второго поколения это значение достигало 9, а у последних разработок это уже 12%. Их уже можно встретить в продаже, но цена на них пока остается высокой.

Важно

Благодаря особой структуре, подобные солнечные панели максимально поглощают энергию в слабом рассеянном свете, поэтому успешно применяются они в районах севера, где мало солнца и имеются огромные свободные площади.

Важно: на эффективности работы таких батарей не сказывается повышение температуры, хотя в сравнении с панелями на основе арсенида галлия, она ниже.

Преимущества

  • гибкая основа, упрощающая монтаж и расширяющая область использования;
  • в рассеянном свет высокий КПД;
  • стабильность при высокой температуре;
  • устойчивость к повреждениям механического характера;
  • независимость от загрязнений.

При правильной эксплуатации они служат не менее 20 лет, за которые падение мощности составляет 15-20.

Недостатки

Единственным минусом считается потребность в большой площади.

Помимо кремниевых, производятся панели, в основе которых лежат редкие, значит, дорогостоящие металлы. КПД подобных конструкций превышает 30%, а цена в разы выше стоимости кремниевых. И, несмотря на это, свою нишу на рынке они успели занять.

Панели из редких металлов

Описание

КПД у них высокий. По этому показателю они впереди кремниевых. В основе устройств, способных к работе в условиях экстремальных, лежит теллурид кадмия. Применяются они для облицовки строений в экваториальных странах, где в дневное время поверхности нагреваться порой выше 80 градусов.

Также растет популярность селенид –индий – медно – галлиевых панелей и селенид- индий – медных.

Но, не забывая о токсичности кадмия, и о том, что галлий с индием достаточно редко встречающиеся металлы, невозможно даже предположить, что они будут использоваться для массового производства.

Их эффективность измеряется 35%, даже иногда 40%. Ранее применялись они в космической области, а сегодня – в тепловых электрических солнечных станциях (благодаря стабильности в диапазоне 130-150 градусов).

На панели маленькой площади концентрируются лучи сотен зеркал. Она генерирует ток и передает одновременно водяному теплообменнику тепло. Он нагревает воду до парообразного состояния. Пар приводит во вращение турбину, генерирующую энергию электрическую. То есть, с наибольшей эффективностью энергия солнца сразу двумя способами превращается в электрическую.

Органические аналоги и полимерные

Это самые новые разработки, появившиеся в последнее время – органические панели, которые отличаются абсолютной безопасностью для экологии и недорогим производственным процессом. Успехов в этом направлении удалось достичь больших.

Среди европейских компаний, успехом наибольшим похвастаться может фирма Heliatek, оснастившая своими пленочными конструкциями, у которых толщина всего миллиметр, ряд зданий. Их КПД находится в пределах 14-15%, цена же ниже в разы, чем у аналогов кристаллических.

Какой же панели отдать предпочтение?

Для загородных коттеджей не трудно выбрать батарею, если он находится на широте 45-60. И выбирать здесь нужно из кремниевых моно- и поликристаллических видов.

При недостаточности места рекомендуется выбрать первые, при отсутствии ограничений площади – вторые.

Производителя, мощность, способную решить все проблемы, оборудование дополнительное рекомендуется выбирать с менеджерами, занимающимися продажей и монтажом данного оборудования.

Видео: ABC-Solar — Виды солнечных панелей

Видео: Поликристаллическая солнечная панель против монокристаллической.

Источник: https://motocarrello.ru/jelektrotehnologii/solnechnye-batarei/1895-solnechnyh-batarej.html

Обзор сравнение солнечных панелей

Для наших клиентов мы провели обзор — сравнение солнечных панелей в условиях Харькова. Целью данного обзора является оценка целесообразности переплачивать 30% за солнечные панели известного европейского производителя, и понятно донести преимущества и недостатки солнечных батарей китайского и немецкого производства.

Для теста мы приобрели немецкую батарею премиум класса, и батарею именитого китайского производителя.

Сравнение солнечных панелей по внешнему виду

Для начала удовлетворим визуалов, посмотрим на внешний вид наших панелей:

Синий цвет, не однородная структура, фотоэлектрические элементы квадратной формы – поликристаллическая солнечная панель китайского производства. Черного цвета, однородной кристаллической структуры, со скругленными углами элементов – монокристаллическая панель немецкого производства.

Вид сзади, заливка компаундом:

Видим неровные стыки китайской батареи и гладкую, аккуратную заливку компаундом в немецких батареях.

Не хочется заранее расстраивать настоящих или будущих владельцев китайских солнечных панелей, но  эти недочеты в будущем приводят к разгерметизации пакета, попаданию воды и трещинам:

Что в дальнейшем приведет к снижению эффективности солнечной батареи до минимума.

Не смотря на описанные недостатки, обе панели выглядят достойно.

Тестирование солнечных панелей по производимой мощности

День был с переменной облачностью, временами светило яркое солнце, а иногда даже срывался снег — идеальные погодные условия для проведения тестирования при разном уровне освещенности.

Нагрузкой батарей служили три лампы накаливания 36 В, 100 Вт. Одновременно производилось измерение тока и напряжения на нагрузке. С одной стороны можно было визуально наблюдать производимую мощность солнечной панели по яркости свечения ламп, с другой — гибко менять нагрузку от 100 до 300 Вт.

В течении дня при разных уровнях освещения производились измерения тока и напряжения на одинаковой нагрузки, подключенной к каждой из панелей. В результате чего получили графики мощности, производимой солнечными панелями в течении дня.

Читайте также:  Ремонт смесителя в ванной своими руками: популярные неисправности и способы их починки

А теперь пара графиков для сравнения солнечных батарей:

Совет

Из графиков видно, что при солнечной погоде, китайская солнечная панель  уступает немецкой примерно на 5%, а при облачности, когда свет рассеянный, видно, что производительность немецкой выше минимум на 30%.

Отобразим это на графике:

Примечание: 1 — пасмурно, 2 — облачно, 3 — солнечно, 4 — яркое солнце

Разница в производительности солнечных панелей видна даже на фото:

Левые три лампы подключены к немецкой батареи, правые – к китайской, солнце зашло за тучи.

А на этом фото ярко светит солнышко:

Выводы из обзора солнечных панелей разных производителей

На основании проведенных измерений можно сделать вывод, что среднегодовая производительность немецкой панели будет на 20% выше, чем китайской. Учитывая более высокую производительность, а также несравненное качество изготовления немецкой солнечной батареи, считаем разницу в 30% полностью оправданной.

Данный обзор солнечных панелей проведен в климатической зоне Харькова компанией «Аркодан». Возникшие вопросы задавайте по телефону или письмом:

+38 (096) 763-25-25   +38 (057) 763-25-25

ул. Ак. Проскуры, 1, Харьков, Украина

[email protected]

Источник: https://arkodan.com/engineering/obzor-sravnenie-solnechnyx-panelej

Сравнительный обзор видов солнечных батарей

Солнечные панели (батареи, модули) представляют собой объединение множества фотоэлектрических преобразователей, зафиксированных на жесткой или гибкой подложке.

Стремительно развивающаяся по всему миру солнечная энергетика подтверждает свою перспективность.

На рынке появляются новые варианты фотоэлектрических модулей, повышается их производительность. На подбор солнечных батарей во многом влияет климат местности, для которой они предназначены.

Именно поэтому желающим обеспечить домохозяйство или промышленный объект «зеленым» электричеством для начала нужно разобраться в особенностях электрогенерирующих устройств.

Как работают солнечные батареи?

Солнечные панели (батареи, модули) представляют собой объединение множества фотоэлектрических преобразователей, зафиксированных на жесткой или гибкой подложке. Детальнее рассмотреть принцип работы устройств можно на примере самого ходового вида промышленных батарей – кремниевого.

Каждый фотоэлемент панели состоит из двух пластин кремния с токоотводящими медными полосками. В месте соприкосновения пластины имеют тончайшее покрытие: одна – борное, другая – фосфорное.

Под действием фотонов солнечного света в фотоэлементе появляются области с избытком и недостатком (так называемые «дыры») электронов. На стыке пластин, в месте полупроводникового p-n перехода, возникает электрогенерирующий эффект.

Обратите внимание

Далее электрический ток по медным полоскам поступает к преобразователям напряжения.

На производительность солнечных панелей во многом влияет ориентация кристаллов и чистота кремния. Последние десятилетия разработчики бьются над улучшением этих параметров, удешевлением производства очищенного, однородного силициума. В качестве полупроводникового материала может выступать не только кремний, но принцип работы солнечных панелей остается тем же.

Основные виды солнечных батарей

По конструкционным особенностям различают жесткие и гибкие солнечные панели. Первые пока что занимают лидирующие позиции на рынке, однако популярность вторых неуклонно растет. Ключевое преимущество гибких солнечных панелей – монтажная универсальность: тонкопленочные устройства можно установить на поверхность любого, в том числе конструктивно сложного, объекта.

Виды солнечных панелей по используемому полупроводниковому материалу:

  • кремниевые;
  • арсенид-галлиевые;
  • на основе CIGS;
  • органические;
  • полимерные;
  • теллурид-кадмиевые.

Существуют также многослойные, комбинированные фотоэлектрические модули.

В солнечной энергетике широко применяются лишь кремниевые панели: они занимают более 80% рынка. Это не самые производительные устройства, да еще и чувствительные к нагреву. Зато у кремниевых фотоэлементов сравнительно низкая стоимость, обусловленная доступностью и дешевизной кварцевого порошка.

Важно! Оптимальной для работы кремниевых панелей считается температура +25 °C. С каждым повышением на градус продуктивность фотомодулей в среднем падает на 0,45%.

Кремниевые солнечные панели

Фотоэлектрические модули на основе кремния бывают кристаллическими и аморфными. Последние делают путем осаждения горячих паров гидрида кремния на подложку – стеклянный лист или эластичную полимерную основу.

На сегодняшний день существует три поколения аморфных солнечных панелей. И если эффективность первых образцов составляла всего лишь 4–5%, КПД последних разработок достигает 12%. На рынке же массово представлены панели второго поколения с продуктивностью 8–9%.

В течение стандартного для них срока службы 20–25 лет мощность аморфных фотоэлементов снижается на 15–20%.

Кристаллические солнечные панели в свою очередь подразделяются на монокристаллические и поликристаллические. У пластин mono-Si окраска однородная, черная, так как их делают из самого чистого кремния с ориентацией кристаллов в одном направлении.

У готовых фотоэлементов форма псевдоквадрата – квадрата с закругленными углами. Получение монокристаллов – трудоемкий и дорогой процесс, поэтому стоимость панелей на их основе достаточно высокая.

Есть еще один важный нюанс: максимальной производительности такие устройства достигают, когда солнечные лучи падают на поверхность панели под прямым углом.

Поликристаллические батареи, или multi-Si, делают из неоднородного кремния. После очищения кремниевый расплав заливают в формы. После остывания полученные блоки разрезают на квадраты. Из-за разносторонней направленности кристаллов у фотоэлементов синий, неравномерный окрас. Технология изготовления поликристаллических панелей проще, а потому и стоимость готовых изделий ниже.

Альтернативные фотоэлектрические модули

Солнечные батареи на основе селенида меди-индия-галлия (CIGS), теллурида кадмия (CdTe) не производятся массово в силу редкости и высокой стоимости сырья. Однако у таких электрогенерирующих устройств есть ряд преимуществ перед кремниевыми изделиями.

Показатели производительности солнечных панелей из редких металлов достигают 25–40%. Кроме того, такие фотомодули стабильно работают в экстремальных условиях – при температуре 80–150 °C.

Как результат, их используют в космической отрасли, тепловой энергетике, для облицовки зданий в богатых странах Аравийского полуострова.

Важно

Сравнительно новая разработка – полимерные и органические солнечные панели. Пионером по продвижению BIOPV является немецкая компания «Хелиатек».

В 2017 фирма запустила самую крупную в мире систему интегрированных органических модулей. Фотоэлектрическую систему мощностью 22 кВт установили на школьной крыше в Ла-Рошеле (Франция).

Пожалуй, главным недостатком гибких органических панелей является невысокий КПД – всего 13%.

К достоинствам модулей, сделанных по технологии BIOPV, можно отнести:

  • экологичность и доступность производства;
  • экономное расходование сырья, энергии;
  • при изготовлении не используются токсичные материалы;
  • малый вес (весят в 10 раз меньше традиционных панелей);
  • возможность простого, быстрого монтажа;
  • низкая себестоимость;
  • не нуждаются в дорогостоящей утилизации.

Что касается полимерных солнечных панелей, то их делают из полифенилена, фталоцианина меди, фуллеренов. Показатели эффективности таких устройств уже достигают 15%. К плюсам относится и дешевизна производства.

Какие солнечные батареи выбрать?

На крышах промышленных объектов, домов целесообразно устанавливать поликристаллические панели. Монокристаллические батареи лучше реагируют на прямой свет, поэтому они наиболее эффективны в сочетании с системами слежения (трекерами).

Устройства желательно устанавливать на высоте, открытых площадках. Панели на основе монокристаллов идеально подходят для экваториальных стран. Преимущества аморфного кремния наиболее полно раскрываются в условиях тени, облачности.

Такие панели рекомендованы для северных регионов, уместны там, где есть большие площади.

Для территории Украины актуальны кристаллические кремниевые модули. Поликристаллические панели подойдут как для крышного, так и для наземного размещения. Если площадь кровли ограничена, лучше установить монокристаллические модели.

Будущему владельцу солнечной электростанции стоит знать, что по стоимости и качеству фотомодули ведущих производителей слабо отличаются.

Детальнее ознакомиться с характеристиками солнечных панелей, чтобы определиться с конкретной моделью, можно у менеджеров компании Ecotech.     

ECOTECH UKRAINE

Источник: https://eco-tech.com.ua/a323495-sravnitelnyj-obzor-vidov.html

Выбор солнечной батареи

Как выбрать солнечную батарею? Этот вопрос часто возникает у потребителей энергосберегающих технологий.

В большинстве случаев, столкнувшись с выбором и установкой солнечных батарей, мы задаем вопрос, какие солнечные панели лучше.

Во-первых, необходимо определиться, для чего батарея вам нужна и где будет проводиться ее установка: на даче или в частном доме. Во-вторых, необходимо выбрать конструкцию солнечной панели. Конструкций солнечных батарей 2:

  • монокристаллическая;
  • поликристаллическая.

Типовая электрическая схема автономного энергоснабжения на основе солнечных батарей, модулей, панелей.

У каждой конструкции есть свои достоинства и недостатки, взвесив которые вы берете себе солнечную батарею для своих нужд.

Совет

Какую же панель стоит брать? Прежде чем говорить о плюсах и минусах выбора, необходимо разобраться с полной конструкцией батареи для того, чтобы провести качественный и правильный выбор.

Солнечная батарея конструктивно представляет собой устройство для преобразования солнечной энергии в электрическую. Состоит батарея из следующих функциональных узлов:

  • алюминиевой рамки;
  • закаленного стекла с антибликом;
  • ламинированной пленки (передней и задней поверхностей );
  • элементов (ячеек) соединенных проводниками;
  • защитной пленки;
  • соединительной коробки.

Принцип работы солнечных батарей.

В конструкции предусмотрены диоды для защиты элементов от перегорания в результате перегрева в частично затененных областях. Выход из строя отдельной составляющей может привести к неисправности всей панели.

Ламинирующие пленки предназначены для герметизации конструкции и обеспечения плотного прилегания полупроводниковой пластины к стеклу. Плотное прилегание обеспечивает минимальные потери мощности, которые возникают из-за преломления света.

Герметизация также используется для защиты от атмосферных осадков и коррозии. Для того чтобы солнечные лучи достигли поверхности полупроводниковых элементов, им необходимо пересечь границы стекла и ламинирующей пленки.

Если стекло во всех моделях солнечных батарей одинаковое, то пленка имеет отличительные характеристики. Характеристики пленки влияют на выходные характеристики панели.

При выборе солнечной батареи проверить качество пленки невозможно, поэтому приходится верить производителю. Перед выбором советуем ознакомиться с репутацией производителей солнечных производителей.

По качеству все полупроводниковые солнечные элементы разделены на 3 типа:

  • Grade A — высокого качества при старении теряется мощность примерно на 5%;
  • Grade B — среднего качества старении теряется мощность не более 30%;
  • Grade C — низкого качества старение элементов приводит к потерям мощности более чем на 30%.

При выборе солнечной батареи важным параметром считается такой параметр, как выходное номинальное напряжение, которое зависит от количества полупроводниковых элементов в схеме. Стандартный модуль рассчитан на напряжение 12 В и состоит из 36 элементов. Их различают по мощности.

Для увеличения тока используют параллельное соединение, а для увеличения напряжения последовательное соединение. Напряжение каждого элемента составляет 0,5 В, при присоединении 36 штук выходное напряжение равно примерно 18 вольт. Этого напряжения вполне достаточно как для заряда аккумулятора, так и для присоединения преобразователей с 12 на 220 В.

Если брать модуль, в котором содержится 72 элемента, то выходное напряжение будет составлять 24 В.

Схема солнечной батареи.

Обратите внимание

Если 72 элементная батарея рассчитана на 12 вольт, то скорее всего это конструкция не из цельных полупроводниковых составляющих, а из их частей, соединенных по смешанной схеме.

Смешанная схема представляет собой как параллельное, так и последовательное соединение кристаллов солнечных элементов.

Приобретать такую конструкцию не рекомендуется по причине низкой надежности из-за большого количества соединений с большей вероятностью появления микротрещин.

Какие модули относят к нестандартным? Модуль, который состоит не из 36 и не 72 элементов. Для того чтобы его соединить с системой, необходим специальный контроллер. Выбирая солнечный модуль, руководствуйтесь значение необходимого напряжения для системы (12, 24, 48 В).

Источник: https://1poteply.ru/radiatory/vibor/kakie-solnechnye-batarei-luchshe-brat.html

Какие солнечные батареи лучше выбрать для дома — отзывы. Жми!

В наше время альтернативные способы обеспечения электричеством дачи или коттеджа неуклонно набирают популярность. Одним из самых востребованных источников автономного энергоснабжения является система солнечных батарей. Принцип действия солнечных батарей общий для всех существующих типов.

Полупроводниковая пластина солнечной панели на атомном уровне состоит из двух слоев. Слой N содержит атомы с лишними электронами, а у атомов слоя P электронов не хватает.

Солнечный свет катализирует отделение свободных электронов в первом слое и перетекание их во второй. В проводнике между слоями появляется электрический ток. Его сила зависит от типа полупроводников.

Панели батарей могут быть сделаны из разных материалов и разными способами.

Итак, солнечные модули могут быть:

Каждый из этих видов можно разделить на подвиды, подробно о каждом подвиде и о том как правильно и по назначению выбрать солнечную батарею поговорим в статье.

Критерии выбора

Выбирая один из видов солнечных батарей для дома, покупатель всегда ориентируется по трем главным критериям:

  1. цена комплекта солнечных батарей;
  2. их КПД;
  3. экологическая чистота.

Обратите внимание: цена и КПД зависит еще и от количества панелей, поэтому важно правильно его рассчитать.

Каждый пункт зависит од двух других, и конструктивных особенностей входящих в комплект панелей.

Читайте также:  Какой теплый пол выбрать: какой вариант лучше + обзор производителей

Цена определяется типом батарей и вспомогательного оборудования, входящего в комплект системы. Трудно назвать точную цифру, ведь видов много. Но можно привести пример среднего по параметрам и стоимости комплекта, который хорошо подойдет для энергоснабжения дачи.

В комплект входят:

  • четыре солнечные панели поликристаллического типа, которые стоят 900 долларов;
  • контролер (нужен для автоматизации зарядных и разрядных процессов аккумуляторов), цена которого – 250 долларов;
  • инвертор (преобразует постоянный ток от батарей в переменный) стоит 970 долларов;
  • два аккумулятора обойдутся в 870 долларов.

Итого – 2990 долларов.

Полезно знать: самые дешевые солнечные батареи – тонкопленочные. Но пока их трудно найти в продаже.

Чем лучше солнечные панели, тем выше их КПД. Все виды солнечных панелей обеспечивают разный КПД. Функциональность каждого вида батарей будет детально рассмотрена в посвященном ему разделе статьи.

А сейчас в качестве примера посмотрим, насколько действенным является описанный выше комплект.

• Мощность входящих в него фотоэлектрических панелей достигает 1000 Вт. • Месячная выработка энергии – 125 кВт/ч.

• Допустимая степень нагрузки – 2,8 кВт.

Возьмите на заметку: рекордный КПД солнечных батарей вывели немецкие инженеры. Он достиг 44,7%. Этой мощности более чем достаточно для питания энергией небольшой дачи.

Достаточно ли безопасны в экологическом плане солнечные панели, чтобы можно было использовать их дома? В публикации, посвященной данному вопросу, Северная Ассоциация США пишет примерно следующее:

«Единственный вредный эффект этих источников энергии заключается в выделении токсических веществ при их изготовлении. Речь идет о таких химикатах, как кадмий. Но этот вред можно свести к минимуму, если правильно подойти к процессу утилизации модулей».

С этой точки зрения самыми небезопасными являются элементы, сделанные на основе теллурида кадмия, о которых будет идти речь ниже. Но подобные батареи трудно найти в продаже, поэтому вряд ли эту проблему стоит рассматривать детальнее.

Кремниевые панели

Во введении было сказано, что солнечные батареи делятся на кремниевые и пленочные.

Этот материал используется в качестве основы для нанесения слоев вещества N и P, между которыми образуется электричество.

Полезно знать: около 90% всех солнечных батарей в мире являются кремниевыми.

Кремниевые панели, в свою очередь, можно разделить на три основных подвида:

  1. Поликристаллические кремниевые панели.
  2. Монокристаллические панели.
  3. Аморфные модули.

Какой из них лучше, станет понятно после детального анализа каждого вида, который следует ниже.

Для изготовления панелей поликристаллического типа используется не самый чистый кремниевый кристалл. Он создается путем охлаждения расплавленного кремния.

Внешне поликристалл можно отличить по неоднородной окраске его поверхности. В ней присутствуют разные оттенки синего цвета, от темно-синего до голубого. КПД таких пластин составляет около 15%.

Внимание совет: если вам нужны недорогие фотоэлектрические элементы для дома и дачи, то лучшего решения, чем поликристалл, вам не найти. Стоят они дешевле, чем панели из монокристаллического кремния, и способны обеспечивать дом достаточным количеством электричества.

Монокристаллу свойственна темно-синяя или черная цветовая гамма. Монокристалл пользуется наибольшей популярностью. Для его изготовления используют кремний самого высокого качества, получаемый литьевым способом.

Расплавленный кремний, контактируя с затравкой, отвердевает, образуя чистейший материал. Изделию придается цилиндрическая форма, из которой потом нарезаются тончайшие пластины.

Процесс изготовления пластин очень дорогостоящий, поэтому солнечные батареи стоят не мало. В подобных пластинах атомы кремния ориентированы таким образом, что их электронам легче покидать свои орбиты. Благодаря этому КПД батарей достигает 20%. Это отличный вариант, как для дачи, так и для жилого помещения.

Возьмите на заметку: если средства позволяют, то лучше монокристаллических батарей вам не найти. Они эффективно работают на протяжении 25 лет, постепенно снижая свой КПД не более чем на 20%.

Аморфным батареям хватает рассеянного солнечного света для того, чтобы вырабатывать на 10% больше электричества в год, чем поликристалл.

Батареи, сделанные на основе аморфного кремния, справляются со своей задачей даже в пасмурную погоду. Для батарей этого типа нормальными являются следующие условия:

  • запыленный воздух;
  • дождь;
  • закат;
  • рассвет.

В основе элементов лежит кремневодород (SiH4). Кремний подвергают действию электрического разряда. Он испаряется и оседает на подложку тонким слоем, не превышающим 1 мкм.

Подложка может быть выполнена из таких недорогих материалов, как:

  • металл;
  • полимерная пленка;
  • керамика;
  • качественное стекло.

Пленочные батареи

Пленочная батарея выпускается в рулонах, которые можно расстелить на больших площадях.

В последнее время обретают популярность новые солнечные батареи, в основе которых лежит не твердая подложка из стекла или металла, а полимерная пленка.

Этот вид батарей обладает такими преимуществами:

Но есть и недостатки:

  1. Батареи не столь мощные, как кремниевые.
  2. Они больше подвержены воздействиям окружающей среды.
  3. К сожалению, пока непросто найти в продаже подобную продукцию, но ее производство налаживается очень активно, и нет причин сомневаться, что в ближайшем будущем приобрести рулонную батарею сможет каждый желающий.

Пленочные батареи делятся на:

Батареи с основой из теллурида кадмия можно наклеивать не только на крыши домов, но и фургонов, ларьков, и даже на предметы одежды).

Эти батареи создаются путем нанесения на пленку теплурида кадмия. Вещество наносят тончайшим слоем всего в несколько десятков микрометров. Следующим слоем накладывается сеть проводников, позволяющая снимать с батареи электричество.

Батарея, созданная таким способом, по мощности не может конкурировать с модулями из кремния. Ее КПД составляет всего 10%. Но она стоит намного меньше, поэтому, несомненно, найдет свою аудиторию потребителей.

Примите во внимание: не рекомендуется проводить много времени в соседстве с таким материалом, как кадмий. Впрочем, главное правильно его утилизировать после эксплуатации.

Важно

Панели с селенидом меди индием в основе в недалеком будущем имеют все шансы стать неизменным элементом практически любого устройства, от мобильного телефона до самолета.

Технология, по которой создаются эти панели, называется CIGS (аббревиатура обозначает химическое соединение Cu(In,Ga)Se2). Полупроводники в них состоят из таких элементов, как:

Существуют некоторые технические проблемы, не позволяющие достаточно удешевить производство пленочных модулей этого типа. Но, хотя они и стоят больше, чем батареи с использованием теллурида кадмия, они более эффективны. Их КПД достигает 15%.

Производство полимерных модулей налажено в Дании, вероятно, скоро пленка будет продаваться и в нашей стране.

Еще одни сравнительно новые пленочные батареи называются «полимерными». Их начала производить компания Mekoprint A/S.

Активный слой пленки состоит из полимера. Его покрывает слой алюминиевых электродов. Эти слои расположены на органической пленке. Снаружи они покрыты защитным слоем.

Цена пленочного модуля не высокая, но и эффективность сильно уступает предыдущим вариантам.

Итоги обзора

Солнечные батареи однозначно окупятся за 25 лет своей службы. Это нетрудно проверить, посчитав, сколько вы платите за электроэнергию государству.

Два основных вида солнечных батарей, дающих наибольший КПД, это поликристаллические и монокристаллические батареи. Из них можно выбирать по таким признакам:

  1. По виду: монокристаллическая батарея меньше поликристалличeской такой же мощности.
  2. По эффективности: в монокристаллах меньше потери энергии и выше КПД.
  3. По цене: монокристалл более дорогостоящий, разница в цене достигает примерно 10%.

Если приоритетнее низкая стоимость, то для дома можно выбрать аморфные батареи. К тому же, они эффективны в местах, где часто бывает пасмурная погода, потому что работают при рассеянном солнечном свете.

Еще дешевле стоят пленочные батареи, но они дают меньший КПД и их пока трудно найти в продаже, производство только началось. Их стоит использовать, если важен малый вес конструкции и возможность наклеивать панель на любую поверхность.

Источник: https://teplo.guru/eko/kak-vyibrat-solnechnuyu-batareyu.html

Как правильно выбрать солнечные батареи для Вашего дома – отзывы специалистов

Высокая солнечная активность в регионе, однозначно, является одним из главных критериев для успешного использования энергии нашего светила.

Однако не менее важным для продуктивности применения потенциальной мощности солнечных лучей является качество оборудования – того самого, что отвечает за превращение энергии лучей в электрическую.

Чтобы солнечные батареи работали максимально долго и эффективно, стоит отнестись к их выбору со всей ответственностью. Отметим основные моменты, на которые следует обратить внимание при выборе преобразователей солнечной энергии.

Марк Астафьев, участник команды по установке фотоэлектрических систем:

«Рынок фотоэлектрической продукции наполнен недорогими китайскими модулями – но это далеко не всегда говорит о низком качестве. Субсидии, введенные китайским правительством для сферы альтернативной энергетики, позволяют производителям снижать цены.

Совет

Чтобы не рисковать, стоит выбирать продукцию крупных известных компаний – как правило, для производственного процесса они используют качественное оборудование. К примеру, JA Solar и Yingli Solar занимаются изготовлением и кремниевых элементов, и самих модулей.

В случае выявления дефектов через несколько лет можно беспроблемно обменять бракованное изделие, так как серьезные компании ответственно относятся к гарантийным обязательствам.

Что касается долговечности солнечных батарей, которые, к примеру, установлены на крыше частного дома, – служить они будут около 40 лет. Из строя обычно выходит инвертор, контроллер и другие составляющие системы, а непосредственно модули долго сохраняют работоспособность.

В случае покупки в интернет-магазине можно ознакомиться с отзывами клиентов о стабильности параметров приобретенных элементов.

Основная рекомендация – находить информацию о производителе, а не о компании, осуществляющей поставки в Россию, и все вопросы адресовать именно ему».

Сергей Бондаренко, тестировщик на заводе по производству солнечных модулей:

«Мощность, напряжение в разных условиях и другие параметры эффективности работы солнечных батарей, их производительность в реальных, а не приближенных к идеальным условиям, выявляются в ходе тестирования. Подобные испытания проводят как на производстве, так и независимые лаборатории.

Рядовому потребителю сложно проверить качество пайки и защитной пленки, наличие защитных диодов, степень герметизации, выяснить подробные характеристики элементов. Все это можно узнать в описании, заключении, подготовленном специалистами в области гелиотехники.

Большинство выпускаемых на сегодня фотоэлементов изготовлены на основе кремния.

Кремниевые солнечные элементы бывают:

  • монокристаллические;
  • поликристаллические;
  • аморфные.

Споры о том, которые из них лучше, продолжаются. Однако можно безошибочно констатировать, что некачественные монокристаллические уступают по работоспособности и долговечности поликристаллическим.

Верно и обратное утверждение, что поликристаллические элементы низкого качества работают хуже имеющих монокристаллическую структуру. Что касается КПД, то у солнечных элементов из монокристаллического кремния он наивысший, но отличие – в десятых долях процентов.

Вся система электроснабжения на солнечных батареях включает несколько важных частей.

Система электроснабжения состоит из:

  • панели с элементами, преобразующими энергию фотонов в электрическую;
  • аккумуляторов с контроллером заряда;
  • инвертора.

Характеристики каждой части важны для работы.

Комплектация панелей разъемами и кабелями для монтажа избавит от необходимости тратить лишние деньги на приобретение.

Хотя, стоит отметить, что даже надежные производители качественных фотоэлектрических элементов не всегда поставляют полный комплект».

Антон Васильев, гелиотехник, на протяжении последних нескольких лет занимается сопровождением проектов по организации производства солнечных батарей:

«Привлекающие своей мощностью и ценой модули могут быть с нестандартным напряжением.

Модуль со стандартным номинальным напряжением 24 В обойдется дороже, чем модуль 20 В. Но для такого оборудования потребуется и более дорогой  MPPT контроллер, так что удешевить систему не получится.

Также при покупке нужно обращать внимание на качество крепежных элементов.

КПД солнечных элементов напрямую влияет на занимаемую площадь.

Обратите внимание

И если есть возможность установить батареи на крышу дома, то есть, нет ограничений по размерам, гораздо важнее оценить общий коэффициент полезного действия всей системы».

Источник: http://diskmag.ru/tehnologii/kak-vybrat-solnechnye-batarei-dlya-doma.html

Каков КПД солнечных батарей?

Сегодня идёт много разговоров вокруг такого понятия, как КПД гелиосистем. Это один из ключевых критериев при оценке эффективности работы солнечных батарей.

Увеличение этого показателя является главной задачей на пути снижения затрат на преобразование солнечной энергии и расширения использования гелиосистем. Низкий КПД солнечных батарей является их основным недостатком.

Что влияет на КПД и эффективность работы солнечных батарей?

Квадратный метр современных фотоэлементов обеспечивает выработку 15─20 процентов от мощности солнечного излучения, попадающего на него. И это при самых благоприятных условиях эксплуатации.

В результате для обеспечения необходимого энергоснабжения требуется установка множества солнечных панелей большой площади. Насколько эффективно такое оборудование и от чего зависит его КПД, постараемся разобраться в этой статье. А также поговорим о сроке службы и окупаемости солнечных панелей.

Читайте также:  Как убрать плесень с деревянных поверхностей: обзор самых эффективных методов

Виды солнечных фотоэлементов и их КПД

В основе функционирования солнечных панелей лежат свойства полупроводниковых элементов. Падающий на фотоэлектрические панели солнечный свет фотонами выбивает с внешней орбиты атомов электроны. Образовавшееся большое количество электронов обеспечивает электрический ток в замкнутой цепи.

Одной или двух панелей для нормальной мощности недостаточно. Поэтому несколько штук объединяют в солнечные батареи. Для получения необходимого напряжения и мощности их подключают параллельно и последовательно.

Большее число фотоэлементов дают большую площадь поглощения солнечной энергии и выдают большую мощность.

Фотоэлементы

Одним из направлений повышения КПД является создание многослойных панелей. Такие конструкции состоят из набора материалов, расположенных слоями. Подбор материалов осуществляется так, чтобы улавливались кванты различной энергии.

Слой с одним материалом поглощает один вид энергии, со вторым – другой и так далее. В результате можно создавать солнечные батареи с высоким КПД. Теоретически такие многослойные панели могут обеспечить КПД до 87 процентов.

Но это в теории, а на практике изготовление подобных модулей проблематично. К тому же они получаются очень дорогие.

На КПД гелиосистем также влияет тип кремния, используемого в фотоэлементах. В зависимости от получения атома кремния их можно разделить на 3 типа:

  • Монокристаллические;
  • Поликристаллические;
  • Панели из аморфного кремния.

Фотоэлементы из монокристаллического кремния имеют КПД 10─15 процентов. Они являются самыми эффективными и имеют стоимость выше остальных. Модели из поликристаллического кремния имеют самый дешевый ватт электроэнергии. Многое зависит от чистоты материалов и в некоторых случаях поликристаллические элементы могут оказаться эффективнее монокристаллов.

Панель из аморфного кремния

Существуют также фотоэлементы из аморфного кремния, на базе которых изготавливают тонкопленочные гибкие панели. Их производство проще, а цена ниже. Но КПД значительно ниже и составляет 5─6 процентов. Элементы из аморфного кремния с течением времени теряют свои характеристики. Для увеличения их производительности добавляют частицы селена, меди, галлия, индия.

От чего зависит эффективность работы солнечных батарей?

На эффективность работы солнечных батарей оказывают влияние несколько факторов:

  • Температура;
  • Угол падения солнечных лучей;
  • Чистота поверхности;
  • Отсутствие тени;
  • Погода.

В идеале угол падения солнечных лучей на поверхность фотоэлемента должен быть прямым. При прочих равных в этом случае будет максимальная эффективность.

В некоторых моделях для увеличения КПД в солнечных батареях устанавливается система слежения за солнцем. Она автоматически меняет угол наклона панелей в зависимости от положения солнца.

Но это удовольствие не из дешёвых и поэтому встречается редко.

При работе фотоэлементы нагреваются, и это отрицательно сказывается на эффективности их работы. Чтобы избежать потерь при преобразовании энергии следует оставлять пространство панелями и поверхностью, где они закреплены. Тогда под ними будет проходить поток воздуха и охлаждать их.

Монтаж солнечных батарей
Несколько раз в год обязательно нужно мыть и протирать панели. Ведь КПД фотоэлектрических панелей прямо зависит от падающего света, а значит, от чистоты поверхности. Если на поверхности есть загрязнения, то эффективность солнечных батарей будет снижаться.

Важно

Важно сделать правильную установку батарей. Это означает, что на них не должна падать тень. Иначе эффективность системы в целом будет сильно снижаться. Крайне желательно устанавливать фотоэлементы на южной стороне.

Что касается погоды, то от неё также зависит очень многое. Чем ближе ваш регион к экватору, тем большая плотность излучения будет попадать солнечного излучения на панели. В нашем регионе зимой эффективность может упасть в 2─8 раз. Причины как в уменьшении солнечных дней так и в снеге, попадающим на панели.

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет.

Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи.

Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.

В среднем срок окупаемости по регионам составляет:

  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.

Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.

Разработки, направленные на увеличение КПД солнечных батарей

В последние годы учёные по всему миру заявляют о разработке технологий, увеличивающих КПД солнечных модулей. Не все из них являются применимыми к реальным условиям эксплуатации, но некоторые из них заслуживают внимания.

Так, в прошлом году специалисты Sharp разработали фотоэлектрические элементы с эффективностью 43,5 процента. Такое увеличение было получено благодаря установке линзы, которая фокусирует получаемую энергию прямо в элементе.

Устройство фотоэлементов Sharp
Физики из Германии 3 года назад разработали фотоэлемент, площадь которого всего несколько квадратных миллиметров. Он состоит из четырёх слоёв полупроводников. Полученных ими КПД составил 44,7 процента. Здесь эффективность была увеличена за счёт размещения в фокус вогнутого зеркала.

Другие британские специалисты разработали технологию, которая увеличивает эффективность фотоэлементов на 22 процента. На гладкой поверхности гибких панелей они нанесли алюминиевые шипы наноразмера. Алюминий рассеивает солнечный свет, поэтому был выбран он. В результате увеличивается количество энергии солнца, которое поглощается фотоэлементом.

За счёт этого удалось добиться увеличения эффективности.
Так, что специалисты в области солнечных батарей бьются за каждый процент и, возможно, в ближайшем будущем они получат широкое распространение. Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта.

Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях

Источник:

Как рассчитать мощность солнечных батарей для дома. Жми!

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, панели соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Виды солнечных батарейСолнечные преобразователи делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условийДанный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

В процессе работы многие батареи нагреваются, что плохо сказывается на качестве преобразования энергии солнца в электрическую. Во избежание потерь необходимо оставлять пространство между устройством и опорной поверхностью. Это позволит потоку воздуха свободно проходить и охлаждать преобразователи.

Важно знать: необходимо протирать панели 2-3 раза в год, очищая их от пыли и тем самым увеличивая проходимость лучей солнца.

КПД фотоэлементов непосредственно зависит от количества попадающего на них солнечного света. И очень важно предусмотреть правильный монтаж преобразователей с полным отсутствием теней, падающих на рабочую поверхность. В противном случае может пострадать эффективность всей системы в целом. Как правило, батареи устанавливаются с южной стороны.

Источник:

Уровень КПД солнечных панелей впервые достиг 40%

Ученые из австралийского университета Нового Южного Уэльса объявили о том, что после серии открытых испытаний в городе Сидней они смогли конвертировать солнечный свет в электроэнергию с рекордным показателем эффективности в 40%.

Здесь же важно отметить, что ученые из Австралии являются одними из первых, кто начал устанавливать рекорды КПД при производстве электричества из солнечного света еще с 1989 года.

На тот момент исследователям удалось добиться результатов в 20% эффективности.

Специалисты, стоящие за этим проектом, объясняют, что, несмотря на сегодняшний уровень исследований в области генерации электричества за счет фотоэлектрических систем, такой показатель эффективности, какой удалось добиться в рамках экспериментов в Сиднее, является первым в истории.

В опубликованной статье научного журнала Progress in Photovoltaics Мартин Грин и его коллеги стараются объяснить, почему их успех в повышении КПД при производстве электричества из солнечной энергии дает новые надежды на популярность этой возобновляемой энергии и почему именно она, возможно, однажды станет основным мировым источником энергии.

Совет

Ученые объясняют, что при работе над этим проектом они обратились за помощью к австралийской компании RayGen Resources и американской компании Spectrolab. Первая помогла с дизайном и монтажом системы, а вторая занималась производством солнечных панелей.

Своему успеху в повышении уровня КПД при производстве электричества из солнечного света международная команда ученых обязана новому разработанному так называемому оптическому полосовому фильтру, использовавшемуся для захвата того солнечного света, который, в свою очередь, без применения данной технологии попросту тратился бы впустую.

Как объясняет Мартин Грин и его коллеги, данный фильтр был построен специально на заказ и использовался для выборочного захвата и передачи части спектра и при этом отбрасывал те световые волны, которые не представляли интерес в рамках этой серии экспериментов. Другими словами, фотоэлектрическая система, построенная учеными, работала по принципу фокусировки солнечного света.

Один из разработчиков новой системы, доктор Марк Киверс, объясняет, что новый подход по сбору солнечной энергии не является сверхуникальным и при желании его можно использовать повсеместно.

Здесь используются самые обычные солнечные ячейки, какие используются во всех солнечных панелях, установленных в мире.

Другими словами, даже самые обычные солнечные панели можно модернизировать таким образом, чтобы они показывали аналогичные результаты эффективности, какие были показаны в рамках экспериментов в Сиднее.

Источник: https://akkummaster.com/prochee/alternativnaya-energiya/kpd-solnechnyh-batarej.html

Ссылка на основную публикацию