Принцип работы солнечной батареи для дома: устройство, схема, эффективность
Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии.
В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию.
Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.
Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца.
В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный.
Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.
Немного истории
Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века.
Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций.
Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.
Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.
Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.
Принцип работы
Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.
При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины.
Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение.
Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.
Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.
Устройство
Конструкция солнечной батареи очень проста.
Основу конструкции устройства составляют:
- корпус панели;
- блоки преобразования;
- аккумуляторы;
- дополнительные устройства.
Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.
Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.
От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.
Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.
Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.
Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.
Как подключается
Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.
Разновидности солнечных батарей
Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.
Выделяют три вида фотоэлементов:
- поликристаллические;
- монокристаллические;
- аморфные.
Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.
Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.
Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.
Преимущества и недостатки
Основные преимущества солнечных батарей:
- солнечная энергия абсолютно бесплатная;
- позволяют получать экологически чистую электроэнергию;
- быстро окупаются;
- простая установка и принцип работы.
Недостатки:
- большая стоимость;
- для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
- эффективность существенно падает в облачную погоду.
Как добиться максимальной эффективности
При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час.
В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.
Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.
Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.
Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.
Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.
При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.
Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.
Видео
Как устроена солнечная батарея, расскажет наше видео.
Источник: https://solar-energ.ru/kak-rabotayut-solnechnye-batarei-printsip-ustrojstvo-materialy.html
Cолнечная батарея, как работает и производится
Содержание:
Ежесекундно огромное количество солнечной энергии поступает на поверхность нашей планеты, давая жизнь всему живому. Достойной задачей для пытливых умов является решение, которое заставило бы ее служить нуждам людей. И это уже пытаются воплотить в жизнь те, кто изобрел конструкцию солнечной батареи, способной преобразовывать солнечный свет в электрическую энергию.
Понять, как работает солнечная батарея, легче на примере конструкции, в основе которой лежит монокристаллический кремний.
Как устроена солнечная батарея
Два слоя кремния с разными физическими свойствами образуют тонкую пластину. Внутренний слой – монокристаллический чистый кремний с р-типом проводимости, который покрыт снаружи слоем кремния «загрязненного». Это может быть, к примеру, примесь фосфора. Он обладает проводимостью n-типа. Тыльная сторона пластины покрыта сплошным металлическим слоем.
В каркасе фотоэлементы закреплены таким образом, чтобы можно было заменить, вышедший из строя. Вся конструкция покрыта закаленным стеклом или пластиком, которые ее защищают от негативного воздействия внешних факторов.
Принцип работы солнечной батареи
В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход.
Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.
При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.
Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.
Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).
Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная.
Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны.
Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.
Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д.
В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%.
Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.
Солнечные элементы способны работать длительное время.
Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов.
Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.
Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.
И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.
Термальная солнечная электростанция в Испании (город Севилья)
Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность. Затем важно, каким запасом энергии они обладают.
Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.
Виды солнечных батарей
Все солнечные панели кажутся на первый взгляд одинаковыми – покрытые стеклом темные элементы с металлическими полосками, проводящими ток, помещенными в алюминиевую раму.
Но, солнечные батареи классифицируют по мощности вырабатываемого ею электричества, зависит которая от конструкции и площади панели (они могут быть миниатюрными пластинками с мощностью до десяти ватт и широкими «листами» на двести и более ватт).
Кроме этого, различаются они по типу образующих их фотоэлементов: фотохимические, аморфные, органические, а также созданные на основе кремниевых полупроводников, у которых коэффициент фотоэлектрического преобразования в несколько раз больший. Следовательно, больше и мощность (особенно во время солнечной погоды). Конкурентом последних может быть солнечная батарея на основе арсенида галлия. То есть, на рынке сегодня встретить можно пять типов солнечных батарей.
Они отличаются материалами, используемыми для их изготовления:
1. Панели из поликристаллических фотоэлектрических элементов, с характерным синим цветом солнечной панели, кристаллической структурой и КПД, равным 12-14%.
Поликристаллическая панель
2. Панели из монокристаллических элементов – более дорогие, но и более эффективные (КПД – до 16%).
Монокристаллическая панель
3. Панели солнечные из аморфного кремния, у которых КПД самый низкий – 6-8%, но вырабатывают они наиболее дешевую энергию.
Панель из аморфного кремния
4. Панели из теллурида кадмия, создаваемые по пленочным технологиям (КПД – 11%).
Панель, в основе которой лежит теллурид кадмия
5. Наконец, солнечные панели на основе полупроводника CIGS, состоящего из селена, индия, меди, галлия. Технологии их получения тоже пленочные, но КПД доходит до пятнадцати процентов.
Панель солнечная на основе CIGS
Кроме этого, панели солнечные могут быть гибкими и портативными.
Гибкие солнечные батареи
Очень удобными являются гибкие панели, которые легко сворачиваются в рулон, словно обычная бумага. Хотя стоимость их выше, чем твердотельных аналогов, они на рынке заняли свою нишу.
В основном они пользуются спросом у туристов и путешественников, которым в условиях отсутствия электрификации необходимо заряжать мобильные гаджеты.
Главным производителем гибких батарей, работающих от солнечной энергии, является компания Sun Charger, которая, к слову, недавно обновила свой модельный ряд моделями 34 Вт и 9Вт.
T_3Fq3YnxMk
Первая модель подходит для питания планшетов, сотовых телефонов, видеокамер, цифровых фотоаппаратов, GPS, гелевых аккумуляторов 6 и 12 вольт, т.е. она может в условиях похода обеспечить потребности нескольких человек.
SunCharger SC-9/14 — батарея в сложенном виде
Она же — в раскрытом виде
Особенности батареи: компактная складывающая конструкция, работающая в диапазоне температур от -50 до +70 градусов, вес которой всего 420 граммов, снабжена антибликовым покрытием, встроенным светодиодом, люверсами для крепления. Выходной разъем круглый (5.5 мм / 2.1 мм.).
Характеристики электрические: рабочее выходное напряжение 13,5 В (стандартное 12В), без нагрузки – 19В; рабочий выходной ток – 0,65 А; габариты в сложенном и развернутом виде — 20.5х15х3 см и 50х41.5х0.4 см; мощность выходная – 8,6 Вт.
Выходной разъём SunCharger SC-9/14
Вторая модель SunCharger SC-34/18 на сегодняшний день является в линейке гибких солнечных батарей самой мощной.
Разработана она специально для универсальных накопителей (ноутбуков), имеющих на входе зарядки, как правило, 17-19 вольт. Максимальная мощность – 18В. К накопителям она подключается напрямую, что обеспечивает идеальное согласование.
Понятно, что для менее «прожорливых» накопителей она также подходит, в том числе для двенадцати вольтовых свинцовых аккумуляторов, используемых в автомобилях.
Солнечная батарея выдает 18 В в точке своей максимальной мощности и напрямую подключается к этим накопителям. Таким образом, она «идеально» с ними согласована.
Естественно, эта батарея подходит и для зарядки менее прожорливых потребителей. Как известно, мощности мало не бывает. А также спокойно заряжает 12 В свинцовые аккумуляторы, в том числе, и автомобильные (через несколько часов зарядки уже можно завести машину). Толщина ее 4 см (т.е. стала чуть больше), но получилась батарея даже немного компактнее, чем обычные батареи на 12 В.
Солнечная гибкая батарея (модель SunCharger SC-34/18)
Достигнуто это за счет более тонкой ткани, используемой в ее производстве и ламинированных фотоэлементов большей площади.
Эта же батарея в раскрытом виде
Помимо особенностей, характерных для предыдущей модели, здесь имеются на выходе помимо круглого разъема, еще «мама» и «папа».
Электрические характеристики: мощность выходная, как понятно из маркировки, 34 Вт; рабочий выходной ток – 1.9 А; габариты 40х18х4 см (в сложенном виде) и 40х18х4 см (в раскрытом). Напряжение на выходе – 18 В и 26 В (без нагрузки). Вес, конечно, намного больше – 1,7 кг.
Портативная солнечная батарея – специально для туристов
У каждого в наше время есть электронные гаджеты. Не суть, что у кого-то их меньше, а кого-то больше. Все их необходимо заряжать, а для этого нужны зарядные устройства.
Но, особенно остро этот вопрос касается тех, кто попадает в места, где отсутствует электропитание. Единственным выходов являются солнечные батареи. Но, цены на них остаются высокими, а выбор — небольшим.
Оптимальным вариантом, как принято считать, является продукция компании Goal Zero (хотя есть и российская продукция, и китайская – как всегда вызывающая сомнении).
Но, оказалось, что не все то плохо, что сделано в Китае или Корее. Особенно порадовала солнечная батарея компания YOLK из Чикаго, которая начала производство компактной солнечной батареи Solar Paper – самой тонкой и легкой. Ее вес всего 120 граммов.
Но есть и другие преимущества – модульная конструкция, позволяющая наращивать мощность. Солнечная батарея похожа на пластиковую коробку, по размерам напоминающую Ipad, только тоньше в два раза. На ее лицевой стороне размещена солнечная панель.
Есть на корпусе выход для ноутбука и порты USB и для подключения других солнечных панелей, а также фонарик. Внутри этой чудо коробки – аккумуляторы и плата управления. Зарядить девайс можно от розетки, причем, одновременно это могут быть телефон и два ноутбука. Конечно, заряжается устройство и от солнца.
Как только на него попадает свет, загорается индикатор. В походных условиях солнечная панель просто незаменима: с успехом заряжает все нужные устройства – телефоны быстрее, ноутбуки.
Портативные солнечные батареи отличаются компактными размерами: они выпускаются даже в виде брелков, прикрепить которые можно к чему угодно. Разрабатывались они для того, чтобы можно было их взять на рыбалку, в поход и пр.
Обязательно у них имеется фонарик, чтобы ночью можно было осветить дорогу, палатку и т.д., крепления, позволяющие легко их разместить на рюкзаках, байдарках, палатках.
Очень важно, чтобы в таком устройстве был встроенный аккумулятор, позволяющий заряжать девайсы и в ночное время.
Эффективность солнечных батарей
Ученые работают над тем, чтобы увеличить коэффициент полезного действия, но пока лидируют по этому показателю солнечные панели из монокристаллических элементов. Состоящие из нескольких слоев — монокристаллические панели, устроены так, что один из слоев поглощает энергию зеленого цвета, другой – красного, третий – синего. Но, стоимость таких панелей очень высокая.
Производство солнечных батарей
Солнечная батарея состоит, как известно, из нескольких обязательных частей.
Основой основ у нее, подобно двигателю у машины или сердцу у человека, является солнечная панель – прозрачный прямоугольный короб с темными квадратиками тонко нарезанного кремния внутри.
Кремний, используемый в производстве, а точнее его оксид (соединение с кислородом) – основной элемент производства солнечных батарей.
Технологии, лежащие в основе производства солнечных батарей, все время совершенствуются и состоят из нескольких этапов.
- На первом этапе подготавливают сырье: очищают кварцевый песок, прокаливая его с коксом. В результате он освобождается от кислорода, превращаясь в куски чистого кремния, напоминающие чем-то уголь. Затем, из него выращивают кристаллы – основу солнечных панелей, упорядочив структуру кремния. Для этого чистый кремний опускают в тигель, нагревают до высокой температуры, добавляя в расплавленную лаву затравку. Можно сравнить ее с образцом будущего кристалла, вокруг которого, слой за слоем нарастает кремний упорядоченной структуры. После нескольких часов роста получается кристалл монокремния (или поликристаллический кремний, процесс получения которого более затратный, что сказывается на цене солнечных батарей из него), напоминающий большую сосульку. Затем заготовку цилиндрическую превращают в параллелепипед. После этого заготовку режут на пластины толщиной 100-200 микрон (толщина трех человеческих волос), тестируют их, сортируют и направляют на следующую стадию обработки.
- На втором этапе пластина паяют в секции, их которых на стекле формируют блоки, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции обычно состоят из 9-10 солнечных элементов, блоки – из 4-6 секций.
- Третий этап заключается в ламинировании спаянных в блоки пластин этиленвинилацетатной пленкой, а затем защитным покрытием, который осуществляется с помощью компьютера, который следит за давлением, вакуумом и температурой.
- Четвертый этап заключительный. Во время него монтируется соединительная коробка и алюминиевая рама. Вновь проводят тестирование, во время которого измеряют показатели напряжение холостого хода, ток короткого замыкания, напряжение и ток точки максимальной емкости.
Лидерами среди предприятий, производящих солнечные батареи, являются страны: Китай (компании Trina Solar, Yingli, Suntech), Япония (Sharp Solar) и США (First Solar), которая не только их производит, но также участвует в проектировании солнечных станций и их строительстве. Мощнейшая в мире СЭС Агуа-Калиенте в Аризоне – дело рук этой компании. Строительством крупнейшей СЭС «Перово» в Украине занималась компания Австрии (Activ Solar).
Использование солнечных батарей производства Suntech для освещения стадиона в Пекине
Сколько стоит солнечная батарея
Продажа солнечных батарей – дело выгодное и перспективное. Объем продаж увеличивается ежегодно. На первом месте по продажам – китайские производители, продукция которым отличается низкой стоимостью. Такая ситуация привела к банкротству крупных немецких брендов, стоят которые вдвое дороже китайских солнечных батарей.
Стоимость солнечных батарей зависит от производителя и мощности, и имеет огромный разброс – от 1800 грн. до 9000 грн. (для Украины), от 5 тыс. рублей до 30 тысяч (для России).
Стоимость этих батарей SunCharger SC- 9/14 и SunCharger SC-34/18 тоже высокая (надо же платить за отличные характеристики). Она составляет соответственно 6100 и 20700 рублей.
Но, в сравнении с гибкой батареей фирмы AcmePower 32 Вт, цена за которую равна 27 тысяч рублей, эта батарея гораздо дешевле.
Солнечная батарея SunCharger SC- 9/14
Солнечная батарея SunCharger SC-34/18
Кто желает сэкономить, могут приобрести солнечные кристаллические складные батареи по цене в 2,5 раза меньшей.
Выводы
Фантастические идеи постепенно становятся реальностью. Вспомним хотя бы микрокалькулятор на фотоэлементах, казавшийся когда-то диковинкой, позволявшей годами не менять батарейку.
Изобретение последних лет – мобильник со встроенной солнечной панелью, автомобили и самолеты, передвигающиеся благодаря, все той же, энергии Солнца.
Солнечные батареи в будущем, непременно станут основным источником энергии, «вылечив», наконец, все гаджеты от «розеткозависимости» и подарив человечеству дешевую энергию.
Источник: https://motocarrello.ru/jelektrotehnologii/1296-solnechnaja-batareja.html
Солнечные батареи: как работают и из чего состоят
Солнце – это неисчерпаемый источник энергии. Его можно использовать, сжигая деревья или нагревая воду в солнечных нагревателях, преобразуя полученное тепло в электроэнергию. Но есть устройства, превращающие солнечный свет в электричество напрямую. Это солнечные батареи.
Сфера применения
Есть три направления использования солнечной энергии:
- Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
- Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
- Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.
Солнечные батареи удобно применять там, куда нельзя подвести электричество к содержанию ↑
Принцип работы
Элементы солнечных батарей представляют собой пластинки из кремния толщиной 0,3 мм. Со стороны, на которую попадает свет, в пластину добавлен бор. Это приводит к появлению избыточного количества свободных электронов. С обратной стороны добавлен фосфор, что приводит к образованию «дырок».
Граница между ними называется p-n переход. При попадании света на пластину, он «выбивает» электроны на обратную сторону. Так появляется разность потенциалов. Вне зависимости от размера элемента, одна ячейка развивает напряжение 0,7 В.
Для увеличения напряжения, их соединяют последовательно, а для повышения силы тока – параллельно.
В некоторых конструкциях, для увеличения мощности, над элементами устанавливались линзы или использовалась система зеркал. С уменьшением стоимости батарей такие устройства стали неактуальными.
Максимальный КПД панели, а, следовательно, и мощность, достигается при падении света под углом 90 градусов.
В некоторых стационарных устройствах батарея поворачивается вслед за солнцем, но это сильно удорожает и утяжеляет конструкцию.
Принцип работы солнечной батареи к содержанию ↑
Преимущества и недостатки применения батарей
У солнечных панелей, как и у любых устройств, есть достоинства и недостатки, связанные с принципом действия и особенностями конструкции.
Достоинства солнечных батарей:
- Автономность. Позволяют обеспечить электроэнергией удаленные здания или светильники и работу мобильных устройств в походных условиях.
- Экономичность. Для выработки электроэнергии используется свет солнца, за который не нужно платить. Поэтому ФЭС (фотоэлектрические системы) окупаются за 10 лет, что меньше срока службы, составляющего более 30. Причем 25–30 лет – это гарантийный срок, а фотоэлектростанция будет работать и после него, принося прибыль владельцу. Конечно, необходимо учесть периодическую замену инверторов и аккумуляторных батарей, но все равно, использование такой электростанции помогает экономить средства.
- Экологичность. При работе устройства не загрязняют окружающую среду и не шумят, в отличие от электростанций, работающих на других видах топлива.
Кроме достоинств, у ФЭС есть недостатки:
- Высокая цена. Такая система стоит довольно дорого, особенно с учетом цены на аккумуляторные батареи и инверторы.
- Большой срок окупаемости. Средства, вложенные в фотоэлектростанцию, окупятся только через 10 лет. Это больше, чем основная масса других вложений.
- Фотоэлектрические системы занимают много места – всю крышу и стены здания. Это нарушает дизайн сооружения. Кроме того, аккумуляторные батареи большой емкости занимают целую комнату.
- Неравномерность выработки электроэнергии. Мощность устройства зависит от погоды и времени суток. Это компенсируется установкой аккумуляторных батарей или подключением системы к сети. Это позволяет в хорошую погоду днем продавать излишки электроэнергии электрокомпании, а ночью наоборот подключать оборудование к централизованному электроснабжению.
к содержанию ↑
Технические характеристики: на что обратить внимание
Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.
Кроме самих батарей, важно подобрать контроллер зарядки аккумуляторов и инвертор, преобразующий заряд аккумуляторных батарей в напряжение сети, а также сами панели.
В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.
Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.
К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.
Кроме мощности и напряжения, важно выбрать фирму-производителя. Такое оборудование приобретается на срок несколько десятков лет, поэтому экономить на качестве нельзя. Производители, давно работающие на рынке, это понимают и дорожат своей репутацией. Можно почитать отзывы о них в интернете и выбрать с самыми положительными.
к содержанию ↑
Виды солнечных батарей
Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.
Внешний вид моно- и поликристаллических панелей
Элементы из монокристаллического кремния
Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:
- из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
- после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
- получившийся брусок разрезается на пластины толщиной 0,3 мм;
- в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
- из готовых элементов собирается ячейка батареи.
Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.
Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.
Фотоэлементы из мульти-поликристаллического кремния
Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа.
Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров.
Поэтому элементы получаются прямоугольной или квадратной формы.
В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество.
Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный.
У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.
Фотоэлементы из аморфного кремния
В последние годы распространение получили гибкие батареи, которые легче жестких.
Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.
Солнечные батареи из аморфного кремния
КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.
Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.
Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.
к содержанию ↑
Контроллер заряда для солнечных батарей
У прямого подключения панели к аккумулятору есть недостатки:
- Аккумулятор с номинальным напряжением 12 В будет заряжаться только при достижении напряжения на выходе фотоэлементов 14,4 В, что близко к максимальному. Это значит, что часть времени батареи заряжаться не будут.
- Максимальное напряжение фотоэлементов – 18 В. При таком напряжении ток заряда аккумуляторов будет слишком большим, и они быстро выйдут из строя.
Для того чтобы избежать этих проблем необходима установка контроллера заряда. Самыми распространенными конструкциями являются ШИМ и МРРТ.
ШИМ-контроллер заряда
Работа ШИМ-контроллера (широтно-импульсная модуляция – англ. pulse-width modulation — PWM) поддерживает постоянное напряжение на выходе. Это обеспечивает максимальную степень заряда аккумулятора и его защиту от перегрева при зарядке.
МРРТ-контроллер заряда
МРРТ-контроллер (Maximum power point tracker – слежение за точкой максимальной мощности) обеспечивает такое значение выходного напряжения и тока, которое позволяет максимально использовать потенциал солнечной батареи вне зависимости от яркости солнечного света. При пониженной яркости света он поднимает выходное напряжение до уровня, необходимого для зарядки аккумуляторов.
Такая система есть во всех современных инверторах и контроллерах зарядки
к содержанию ↑
Виды аккумуляторов, используемых в батареях
Различные виды аккумуляторов, которые можно использовать для солнечной батареи
Аккумуляторы – важный элемент системы круглосуточного электроснабжения дома солнечной энергией.
В таких устройствах используются следующие виды аккумуляторов:
- стартерные;
- гелевые;
- AGM батареи;
- заливные (OPZS) и герметичные (OPZV) аккумуляторы.
Аккумуляторы других типов, например, щелочные или литиевые дорогие и используются очень редко.
Все эти виды устройств должны работать при температуре от +15 до +30 градусов.
Стартерные аккумуляторы
Самый распространенный тип аккумуляторов. Они дешевы, но обладают большим током саморазряда. Поэтому через несколько пасмурных дней батареи разрядятся даже при отсутствии нагрузки.
Недостатком таких устройств является то, что при работе происходит газовыделение. Поэтому их необходимо устанавливать в нежилом, хорошо проветриваемом помещении.
Кроме того, срок службы таких аккумуляторов до 1,5 лет, особенно при многократных циклах заряд-разряд. Поэтому в долгосрочной перспективе эти устройства окажутся самыми дорогими.
Гелевые аккумуляторы
Гелевые аккумуляторы –изделия, не требующие обслуживания. При работе отсутствует газовыделение, поэтому их можно устанавливать в жилой комнате и помещении без вентиляции.
Такие устройства обеспечивают большой выходной ток, имеют высокую емкость и низкий ток саморазряда.
Недостаток таких приборов в высокой цене и небольшом сроке службы.
AGM батареи
Эти батареи имеют небольшой срок службы, однако, у них есть много преимуществ:
- отсутствие газовыделения при работе;
- небольшими размерами;
- большим количеством (около 600) циклов заряда-разряда;
- быстрым (до 8 часов) зарядом;
- хорошей работой при неполном заряде.
AGM батарея изнутри
Заливные (OPZS) и герметичные (OPZV) аккумуляторы
Такие устройства являются самыми надежными и имеют наибольший срок службы. Они обладают низким током саморазряда и высокой энергоемкостью.
Эти качества делают такие приборы наиболее популярными для установки в фотоэлементных системах.
к содержанию ↑
Как определить размер и количество фотоэлементов?
Необходимые размер и количество фотоэлементов зависит от напряжения, силы тока и мощности, которые нужно получить от батареи. Напряжение одного элемента в солнечный день равно 0,5 В. При облачности оно намного ниже.
Поэтому для зарядки аккумуляторов 12 В, соединяются последовательно 36 фотоэлементов. Соответственно, для аккумуляторов 24 В необходимо 72 элемента и так далее.
Общее их количество зависит от площади одного элемента и необходимой мощности.
Один квадратный метр площади батареи, с учетом КПД, может выдать приблизительно 150 Вт. Точнее можно определить по метеорологическим справочникам, показывающим количество солнечной радиации в месте установки гелиооэлектростанции или в интернете. КПД устройства указан в паспорте.
При изготовлении фотоэлектростации своими руками необходимое количество элементов определяется по мощности одного элемента в данном климате с учетом КПД.
Расчет количества солнечных батарей исходит из необходимого электричества к содержанию ↑
Эффективность солнечных батарей зимой
Несмотря на то что зимой солнце поднимается ниже, поток света уменьшается незначительно, особенно после выпадения снега.
Основных причин, по которым солнечные элементы зимой менее эффективны три:
- Меняется угол падения лучей. Для того чтобы сохранять мощность, угол наклона батареи необходимо менять хотя бы раз в сезон, а лучше каждый месяц.
- Снег, особенно влажный, налипает на поверхность устройства. Его необходимо убирать сразу после выпадения.
- Зимой меньше продолжительность светлого времени суток, а также больше пасмурных дней. Изменить это невозможно, поэтому приходится рассчитывать мощность батареи по зимнему минимуму.
к содержанию ↑
Правила установки
Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке. Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания.
Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.
Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.
Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.
Источник: https://LampaExpert.ru/alternativnye-istochniki/chto-takoe-solnechnye-batarei
Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях
Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения.
Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями.
Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.
Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.
Содержание
Принцип работы солнечной батареи
Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом.
Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое.
Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.
Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния.
Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.
КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.
Технические характеристики
Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:
- Непосредственно фотоэлементы / солнечная панель;
- Инвертор, преобразовывающий постоянный ток в переменный;
- Контроллер уровня заряда аккумулятора.
Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.
Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.
(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)
Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.
Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.
Установка солнечных батарей
Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно.
Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону.
Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.
Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.
Солнечная батарея своими руками
Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.
Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.
Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.
Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут.
Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели.
В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.
Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом.
Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты.
Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.
Современные устройства со встроенными солнечными модулями
- Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
- Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
- Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.
Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.
Источник: https://mbhn.ru/solnechnye-batarei