Что такое селективность автоматических выключателей + принципы расчета селективности

Принцип работы селективности автоматических выключателей

instrument.guru > Электричество > Принцип работы селективности автоматических выключателей

Селективность в области электрики является одним из основополагающих понятий. Она представляет собой защиту электрических устройств от поломок или каких-либо отклонений в работе. С помощью данной функции автоматы работают дольше, повышается уровень безопасности.

Что такое селективность в области электрики?

Селективность или избирательность – особенность релейной защиты, которая определяется умением находить неисправный элемент всей электрической системы и выключать именно его.

Защита может быть двух видов: абсолютная и относительная, в зависимости от отключения участков. В первом случае более точно срабатывают предохранители на том участке, где произошло замыкание или поломка.

Второй тип селективности заставляет отключаться автоматы, которые находятся выше, если защита других не вступила в действие по каким-либо причинам.

Типы селективности электрических приборов

Классификацию защиты электрических устройств можно представить в различии схем подключения:

  • Полная. Если несколько приборов подключены последовательно, то на неисправность быстрее реагирует тот, что находится ближе к зоне аварии.
  • Частичная. Принцип действия селективности автоматов аналогичен с полной, но существует ограничение величины тока.
  • Временная. Такого рода избирательность предполагает разное время выдержки автоматов с одинаковыми характеристиками на срабатывание в случае поломки. Эта защита предназначена для того, чтобы подстраховать автоматы по скорости выключения. Например: первый начинает действовать спустя 0,2 сек, второй – 0,4 сек и т. д.
  • Токовая. Принцип работы селективности тот же, что и у временной, но в этом случае параметром выступает максимальная токовая отметка. Выставляются определённые значения в порядке убывания от источника питания до объекта нагрузки. Например, при вводе 28 А., к розеткам 18 А и 12 – к свету.
  • Времятоковая. Одна из самых сложных систем по защите от неисправностей. Аппараты подразделяются на четыре различные группы: A, B, C и D, каждая из которых реагирует на ток. В этом случае сложно составить схему защиты автоматических выключателей при коротком замыкании. Наиболее эффективна защита будет при первой группе А. Её используют в основном для электронных цепей. Наибольшую популярность и распространённость получили аппараты типа С, однако следует серьёзно отнестись к их установке.
  • Зонная. Этот способ защиты используется чаще всего в промышленности, так как он является дорогостоящим и довольно сложным. За работой электрической сети следят специальные приборы. При достижении установленного значения все данные передаются в центр контроля, где выбирается аппарат для выключения. Селективность этого вида предполагает наличие специальных электронных расцепителей. Они действуют следующим образом: при обнаружении какого-либо нарушения аппарат, расположенный ниже, подаёт сигнал другому автомату, который находится выше. Если в течение 1 секунды не сработает первое устройство, включится второе.
  • Энергетическая. Здесь автоматы действуют очень быстро, благодаря чему ток короткого замыкания не успевает достичь максимального значения.

Таблица селективности

Защита автоматических выключателей исправно работает обычно при маленьких перегрузках. При коротком замыкании сформировать селективность намного тяжелей.

Для таких целей существует таблица селективности, которая позволяет генерировать связки с избирательностью вступления в действие. Один расчёт предназначен для одного вида аппарата.

Ниже представлен пример такой таблицы, который также можно найти на интернет-сайтах производителей автоматов.

Расчёт селективности

Чаще всего защитными устройствами выступают обыкновенные автоматические выключатели. Их селективность обеспечивается с помощью верного выбора и настроек параметров. Принцип работы таких выключателей обусловлен выполнением следующего условия:

  • Iс.о.послед ≥ Kн.о.* I к.пред., где:
    • — Iс.о.послед — ток, при котором вступает в действие защита;
    • — I к.пред. — ток короткого замыкания в конце зоны действия защиты;
    • — Kн.о. — коэффициент надёжности, зависящий от параметров.

Определить селективность при управлении аппаратов по времени можно при помощи следующей формулы:

  • tс.о.послед ≥ tк.пред.+ ∆t, где:
    • — tс.о.послед и tк.пред. — временные интервалы, через которые срабатывают отсечки автоматов, в зависимости от близости к источнику питания;
    • — ∆t — временная ступень селективности.

Карта селективности

Для того чтобы обеспечить максимальную защиту автоматических выключателей, нужна специальная карта селективности или её графическое изображение. Эта карта представляет собой своеобразную схему, где отображаются все совокупности токовых характеристик используемых устройств в электрической сети (пример представлен ниже).

Одно из основных правил защиты выключателей – все автоматы должны быть подключены друг за другом по очереди. Карта селективности предназначена для изображения характеристик всех этих приборов. Для её создания необходимо придерживаться ряда правил:

  • Установки защит должны исходить из одного напряжения;
  • Рисуя карту нужно правильно выбрать масштаб, чтобы были изображены все расчётные точки;
  • Помимо характеристик автоматов, следует указать максимальные и минимальные значения коротких замыканий в точках системы.

Как показывает практика, селективность защиты требуется не всегда. Её применяют, только если есть риск серьёзных повреждений. Когда при расчёте получаются высокие значения номиналов автоматов, рекомендуется установить рубильники или специальные селективные устройства.

Селективность автоматов ПУЭ

Существует свод правил устройств электроустановок (ПУЭ), где есть чёткие понятия, как эксплуатировать автоматические выключатели. В пункте 3.1.4. сказано: для того чтобы автоматы защиты не отключали устройства при кратковременных перегрузках, уставки выключателей нужно выбирать по номинальным токам электроприёмников.

Следует выделить ещё одно важное правило: в качестве устройств защиты должны использоваться предохранители и автоматические выключатели.

Принцип селективности для выбора выключателей

При проведении электрики в доме необходимо учитывать тот факт, что ток может причинить большой вред. Во избежание неприятных последствий устанавливают предохранители или автоматические выключатели. Принцип селективности позволяет надёжно использовать электрическую сеть благодаря правильному выбору автоматов.

Для абсолютно любой схемы выявляется определённая система защиты, которая разделяют проводку на определённые участки, именуемые электрическими цепями. Поломка может возникнуть внутри приёмника, генератора или же проводов. Каждая неисправность требует особенного технического решения, благодаря которому можно быстро и эффективно найти и исправить повреждение.

Принцип селективности призван определять правила установки и совместимости защит. Он обеспечивает:

  • безопасность электрики и людей;
  • автоматическое выявление зоны поломки и её устранение;
  • снабжение электрическим током все участки, расположенные рядом с повреждённым;
  • поддержание качества электроэнергии.

Обобщая все вышесказанное, можно отметить, что избирательность защитных устройств, в том числе и автоматических выключателей, необходимо всегда учитывать при установке электрической проводки для безопасного и наиболее надёжного использования.

Источник: https://instrument.guru/elektrichestvo/printsip-raboty-selektivnosti-avtomaticheskih-vyklyuchatelej.html

Селективность автоматических выключателей: теория и практика

Проектируя новую электрическую сеть или реконструируя уже существующую, всегда необходимо придерживаться требований, которые создают условия надежной работы.

В частности, речь идет о селективности — согласовании рабочих характеристик защитных аппаратов на всех этапах распределения электроэнергии.

Это делается для того, чтобы в случае короткого замыкания или перегрузки сработал только тот защитный аппарат, в цепи которого возникла неисправность. При этом остальная часть электроустановки должна не отключаться, а оставаться в работе.

Обратите внимание

Например, если произошло короткое замыкание в розетке на кухне, то должен сработать групповой автоматический выключатель (на схеме аппарат с защитной характеристикой «В» и номинальным током в 10 А). Таким образом, должна отключиться только поврежденная линия «розетки кухни», а не вводной аппарат, отключая при этом всю квартиру.

Если отключения защитного аппарата по каким-либо причинам не произошло, то возникшую неисправность в розетке контролирует вышестоящий автоматический выключатель квартирного щитка.

Основные определения:

Селективность — согласование характеристик установленных последовательно аппаратов защиты таким образом, чтобы в случае аварии отключалась только та линия питания или часть схемы, где возникла неполадка.

Полная селективность — вид координации работы защитных аппаратов, при котором аппарат со стороны потребителя отключается раньше, чем аппарат со стороны источника питания. Отключение происходит во всем диапазоне возможного тока к.з. в данной сети влоть до значения максимальной отключающей способности нижестоящего аппарата.

Частичная селективность — вид координации работы защитных аппаратов, при котором аппарат со стороны потребителя осуществляет защиту до значения Is (предельного тока селективности). При этом аппарат со стороны источника питания не должен срабатывать.

Зона перегрузки — диапазон сверхтока, в котором за срабатывание автоматического выключателя отвечает тепловой расцепитель.

Зона короткого замыкания — диапазон сверхтока, в котором за срабатывание автоматического выключателя отвечает электромагнитный расцепитель.

Избирательность срабатывания устройств защиты достигается за счет согласования время-токовых характеристик. Например, для обеспечения селективной работы оборудования при перегрузках достаточно, чтобы номинальный ток защитного аппарата со стороны питания минимум на 1 ступень был выше номинального тока автоматического выключателя со стороны нагрузки.

Методы обеспечения селективности

В зоне перегрузки обычно реализуется время-токовый тип селективности. В зоне КЗ могут использоваться другие методы обеспечения селективности, о которых мы поговорим далее.

Временная селективность

Этот вид селективности обеспечивается благодаря разному времени срабатывания аппаратов защиты.

Время срабатывания ближайшего к защитному оборудованию аппарата защиты №1 настраивается на значение 0,02 с. На следующем этапе защиты отключение неисправности в цепи обеспечивается настройкой времени срабатывания аппарата 0,5 с. На последнем этапе выбирается время срабатывания выключателя — 1 секунда. Защита № 3 будет резервировать 2 нижестоящие защиты №1 и №2.

Токовая селективность

У всех защит №1, №2 и №3 выдержка по времени срабатывания минимальна: 0,02 с, однако значения срабатывания по току (уставки) отличаются: 200, 300 и 400 А соответственно. При возникновении в защищаемой сети короткого замыкания ток будет резко возрастать и вызывать срабатывание защит. Если защита №1 не сработает, то ее будет резервировать следующая защита №2.

Время-токовая селективность

Важно

Еще одним способом настройки защиты электроустановок до 1 кВ является согласование время-токовых характеристик применяемых автоматических выключателей.

Так, например, можно добиться избирательности срабатывания защиты, подобрав время-токовую характеристику выключателя В таким образом, чтобы она располагалась на определенном расстоянии ниже характеристики выключателя А. Эта зона определяется опытно-расчетным путем с учетом погрешностей срабатывания защит расцепителей. С учетом этой зоны строятся таблицы селективности.

Сегодня производители предоставляют своим клиентам уже готовые таблицы селективности, при помощи которых можно с уверенностью выбирать гарантированно селективные связки автоматических выключателей.

Выбирая аппараты защиты с учетом требований селективности защиты, вы повышаете не только надежность электроустановки, но и упрощаете работу по поиску поврежденного участка.

Создать селективную защиту, применяя аппараты разных производителей, проблематично, поэтому следует устанавливать защитные аппараты одного производителя, дополнительно пользуясь специальными таблицами селективности.

Источник: https://KEAZ.ru/company/press-center/blog/2016/1079-selektivnost-avtomaticheskih-vikluchateley-teoriya-i-praktika

Селективность автоматических выключателей

Давайте разберемся, что такое селективность автоматических выключателей. При перегрузке или коротком замыкании в линии электросети должен сработать автоматический выключатель. При этом нам хочется, чтобы отключилась минимальная часть потребителей, а остальные продолжали работать.

При правильно настроенной селективности, должен сработать только автомат аварийной линии, а групповой автомат должен остаться включенным.

Таким образом, селективность автоматических выключателей — это такой подбор устройств в одной системе, при котором в случае аварийной ситуации на любом ее участке, отключение производилось одним автоматом, который отвечает только за данный участок, а другие автоматы при этом не срабатывали.

Другими словами, селективность — согласование работы установленных последовательно защитных аппаратов таким образом, чтобы в случае перегрузки или короткого замыкания отключалась только та часть установки, в которой возникла неисправность.

Какая может быть селективность при защите, построенной на обычных модульных автоматических выключателях? Мы располагаем выбором номинального тока и характеристики срабатывания: B, C и D. Невелик выбор, но не у всех есть возможность даже этим набором располагать: автоматы типов B и D продаются далеко не во всех магазинах.

Еще одна проблема — далеко не везде токи КЗ достигают величины, достаточной для срабатывания автоматов с характеристикой D. Если промышленные автоматы могут иметь фиксированную или регулируемую выдержку времени при срабатывании, то модульные автоматы такой роскоши не позволяют.

Рассмотрим типичный пример щитка квартиры или небольшого дома:

Читайте также:  Как сделать бойлер косвенного нагрева своими руками: инструкция и советы по изготовлению

Здесь мы видим общий вводной автомат на 25А с характеристикой срабатывания С, две отходящих линии на розетки, защищенных автоматами С16, и одну линию на освещение, защищенную автоматом В10.

Совет

В зоне перегрузки обычно селективность соблюдается, а вот в зоне короткого замыкания не всё так просто. Ток срабатывания мгновенного расцепителя у автоматов типа В находится в пределах (3÷5)In, а у автоматов типа С в пределах (5÷10)In.

Причем заранее неизвестно, какая будет кратность срабатывания у конкретного автомата.

Например, у одного выключателя с характеристикой С она может быть равна 5, у другого из этой же коробки — 8 или 10. Допустим, мгновенный расцепитель АВ0 срабатывает при 5In, АВ1 — при 5In, АВ2 — при 10Inа ток короткого замыкания в точках К2-К4 равен 150А.

При замыкании в точке К2 ток будет достаточен для срабатывания как АВ1, так и АВ0, с точкой К4 ситуация аналогичная. Какой из двух автоматов сработает раньше, либо они сработают оба — неизвестно, как получится. При замыкании в точке К3 автомат АВ2 по отсечке вообще не сработает, АВ0 отключится раньше.

То есть селективности при коротком замыкании у нас нет вообще.

При токе замыкания 100А ситуация будет получше, потому что мгновенный расцепитель АВ0 при этом токе не будет срабатывать. АВ1 и АВ3 сработают мгновенно, а вот более грубый АВ2 так же, как и АВ0 будет работать в зоне перегрузки.

Обратимся к графику. Для АВ0 кратность тока равна 4, время срабатывания от 2 до 6 секунд. Для АВ2 кратность равна 6, время срабатывания от 1 до 3.5 секунд. Тоже есть вероятность того, что АВ0 сработает раньше.

Тоже нет полной селективности.

Мы рассмотрели довольно малые токи короткого замыкания, которые обычно бывают в слабых, сильно перегруженных сетях, либо на отдаленных розетках, в удлинителях и т.п. Чаще они имеют более высокие значения, и при этом все автоматы работают в зоне отсечки.

И какой из них сработает раньше, какой позже — это как повезет. Хороший вариант — поставить групповой автомат (АВ0 в нашем примере) с небольшой задержкой при срабатывании (полагаю, было бы достаточно 0.1-0.2с), но таких модульных автоматов в нашем ширпотребе нет.

Обратите внимание

Может быть, если есть возможность, имеет смысл АВ0 взять с характеристикой D. А АВ1 и АВ2 подобрать так, чтобы кратность срабатывания была поближе к минимальной.

Брать АВ0 более высокого номинала не стоит, так как он не будет уже выполнять функции подстраховки нижестоящих автоматов.

У модульных автоматических выключателей есть еще такой параметр, как класс токоограничения, который фактически отражает быстродействие электромагнитного расцепителя.

Казалось бы — чем быстрей, тем лучше, но для селективности имеет смысл поставить групповой автомат с более медленным срабатыванием, чтобы при КЗ на какой-то отходящей линии он не срабатывал вместе с автоматом этой линии. Хотя нет гарантий того, что автомат с меньшим классом токоограничения сработает медленней автомата с более высоким классом.

Вряд ли все производители придерживаются единых норм по этому параметру. Но если есть возможность поставить автомат с более высоким классом токоограничения на отходящую линию, то стоит так сделать.

При проектировании рассчитываются токи короткого замыкания в определенных точках электросети. На этих данных строится защита — так, чтобы при коротком замыкании или перегрузке в максимуме случаев срабатывал только один автомат, а именно тот, который расположен ближе всего со стороны источника питания.

В домашних условиях такой расчет провести не так уж и сложно, но обычно его не делают, а просто придерживаются такого правила: номинал автомата, находящегося со стороны потребителя, должен быть меньше, чем у автомата, находящегося со стороны источника.

Если вы прочитали и ничего не поняли, то могу порекомендовать небольшой видеоролик с ютуба:

Полной селективности на таких автоматах почти никогда не удается добиться, поэтому обычно приходят к какому-то разумному компромиссу. Но производители знают о такой проблеме, и разрабатывают селективные модульные автоматы.

Например, ABB уже несколько лет производит селективные модульные автоматические выключатели S750DR номиналом от 0,5 до 63А, внешне очень похожие на обычные автоматы, но с существенными отличиями внутри.

В каталоге АВВ приводит следующую схему:

Честно говоря, я ожидал увидеть немного другое. В моем представлении, устройство автомата должно было отличаться от обычного лишь механизмом замедления срабатывания электромагнитного расцепителя. На деле оказалось все сложней.

Важно

В каждом полюсе автомата S750DR два токовых пути, соответственно и два силовых контакта. При появлении сверхтока в цепи, главный контакт размыкается моментально, но ток через автомат проходит по дополнительному пути, через верхний по схеме контакт. В этой цепи стоит резистор 0.5 Ом.

Естественно, он не рассчитан на длительное протекание тока, но доли секунды он выдержит. За это время должен разомкнуться нижестоящий автомат. Если этого не происходит, то быстродействующий селективный тепловой расцепитель разорвет изолирующий контакт и селективный автомат оказывается в отключенном состоянии.

Иначе — селективный биметалл остывает и главный контакт автоматически переходит во включенное состояние. Я не знаю, откуда у автомата берутся силы на возврат главного контакта во включенное состояние, но производитель утверждает, что автомат работает именно так. Цена таких автоматов немалая: порядка 4-5 тыс.

рублей за полюс. Называются автоматы S751DR, S752DR, S753DR, S754DR, где последняя цифра означает количество полюсов.

Также на отечественном рынке предлагаются модульные селективные автоматы от Hager. Например, вот такая модель Hager HTS350E. 3 полюса, 50А, характеристика Е. Стоит порядка 28 тыс. рублей.

Источник: http://electromaster.pro/selektivnosti-avtomatov.php

Селективность и время токовые характеристики автоматических выключателей

Во время проектирования электрической проводки и ещё на стадии формирования всех электроцепей и установки оборудования необходимо позаботиться о качественной защите.

Обеспечивают такую защиту два типа приборов – автоматика и УЗО, которые в нужный момент выполняют отключение части электропроводки от питания.

Для подобного выбора необходимо учитывать селективность автоматических выключателей , которая заключается в правильном расположении каждого автомата и его подключению к электропроводке.

Совет

Отключение производится с небольшой временной задержкой, которую также потребуется учесть при монтаже электрощитовой и установке автоматики. Можно рассчитать временную задержку и ампераж каждого выключателя автоматики для обеспечения максимальной защиты всей цепи.

Существует две ситуации, при которых срабатывает автоматика и УЗО – это короткое замыкание электропроводки или перенапряжение в сети. Правильно рассчитанная селективность автоматических выключателей позволит своевременно выполнить отключение и локализовать повреждённый участок электропроводки.

Автоматика срабатывает под воздействием теплового или магнитного расцепителя. Тепловой датчик срабатывает при возникновении зоны перегрузки или перенапряжения, а магнитный учитывает ситуации при возникновении короткого замыкания на каком-либо участке цепи.

Как выбрать автоматы защиты по их характеристикам?

Автоматы защиты в правильно смонтированном электрощите должны отвечать за каждый участок электропроводки и подключенное к ней оборудование.

То есть, каждый автомат может своевременно обесточить только один участок цепи, оставив остальные электроприборы и сеть в рабочем состоянии.

Кроме того, при необходимости автомат может быть отключён вручную, например, для ремонтных работ или замены оборудования.

Чтобы селективность автоматических выключателей соответствовала максимальному уровню обеспечения безопасности, автоматика должна располагаться в два ряда. Первый ряд автоматов отвечает за каждый участок электропроводки и подключенные к ней приборы, а второй обеспечивает защиту уже всей проводки в помещении, отсекая его полностью от питания.

Автоматические выключатели, отвечающие за безопасность подключения оборудования на каждом участке должны иметь меньший ампераж, чем главные автоматы, обеспечивающие защиту всей сети.

Принцип селективности автоматических выключателей обеспечивает подобное условие.

То есть, первый ряд автоматов будет отключать питание при возникновении короткого замыкания прежде главных автоматов и оставит в работе другие участки электроцепи помещения.

Как расположить автоматы защиты?

Расположить автоматы защиты следует исходя из принципа селективности и времятоковых характеристик.

То есть, тут учитываются время токовые характеристики автоматических выключателей и их номинал, который указан в соответствующей документации.

Автоматы с меньшим номиналом устанавливаются ближе к потребителям, а автоматика с большим номиналом обеспечивает общее подключение.

Аналогично выбирается автомат и по времени срабатывания. Приборы защиты, срабатывающие быстрее, устанавливаются в первом ряду.

Второй ряд формируется (он может состоять и из одного автомата) из приборов, время срабатывания которых будет дольше.

Чтобы определить, какой прибор в каком ряду будет установлен для селективности, необходимо выполнить расчеты автоматических выключателей , исходя из их характеристик.

Определение время токовых характеристик

Время токовая характеристика автоматического выключателя определяется отношением времени срабатывания автомата к току, который протекает через его цепь. То есть, подобная величина будет иметь вид кривой, отображающей связь между током во время работы сети и временем отключения приборов автоматики.

Если говорить более понятным языком, то автомат защиты будет отключен при достижении определенной температуры пластины из биметалла.

Нагрев пластины осуществляется за счёт повышения тока, проходящего через автомат.

Время токовые характеристики и показывают, насколько сильным должен быть ток, чтобы отключить автоматику, и за какое время произойдёт нагрев расцепителя и перевод прибора в отключенное состояние.

Рисунок отображает время токовую характеристику для обычного автомата защиты , а оси координат позволяют определить время нагрева расцепителя и срабатывания выключателя.

Обратите внимание

Ось абсцисс показывает отношение тока, который протекает через автомат, к его номинальному току.

Также на рисунке можно увидеть, что время отключение автоматики будет стремиться к бесконечности при значении I/Iн≤1.

Если говорить более понятным языком, то до момента, когда номинальный ток будет больше протекающего через автомат, либо равен ему, выключатель не отключится.

Также тут можно увидеть, что автомат защиты будет отключен гораздо быстрее, если значение I/Iн будет иметь большую величину.

Если рассматривать подобное значение для левой кривой, то оно должно составлять «7» и, соответственно, автомат перейдёт в отключенное состояние через 0,1 секунды.

Подбор номинала автоматического выключателя

Чтобы подобрать для конкретной цепи номинал автоматического выключателя можно воспользоваться одним из двух методов:

  • Провести самостоятельный расчёт;
  • Выбрать номинал в таблице для сечения используемых кабелей в проводке.

Наиболее простым будет, конечно же, выбор номинала для автоматов по таблице. Однако, это выполнить не всегда возможно, так как проводка может использовать сразу несколько вариантов сечения для кабелей. В таких ситуация выполняется расчет автоматического выключателя согласно мощности используемых потребителей, безопасность работы которых он и осуществляет.

Определив мощность всех приборов на участке цепи, вам будет необходимо высчитать потребляемый ток, то есть, ампераж данного участка. Он определяется отношением мощности к напряжению, то есть, делим рассчитанную нами мощность участка проводки на напряжение сети – 220В.

Например, для обогревателя мощностью 2,4 кВт такой расчёт будет иметь вид отношения:

2,4 / 220 = 11А.

Важно

Следующим этапом расчётов будет умножение полученного потребляемого тока на коэффициент погрешностей и потерь (учитывается старение проводки, её повреждение, некачественная изоляция и так далее), который составляет величину от 1 до 1,25.

В зависимости от используемых приборов этот коэффициент вы выбираете самостоятельно. Для освещения расчеты автоматического выключателя производится по минимальным значениям коэффициента – единице, а для более мощных приборов – печей или кондиционеров – 1,2-1,25.

Лучше всего для обычного бытового помещения выбрать средний коэффициент 1,1.

Определив необходимое для обеспечения защиты электропроводки значение, выбирается конкретный номинал автоматических выключателей, который будет наиболее близок к полученному числу. Для бытовых помещений такой номинал обычно составляет от 6 до 50 А.

Выбор автоматов по время токовой характеристике

Итак, номинал по нагрузке для электроцепи мы уже определили. Теперь необходимо провести расчет автоматического выключателя по его время токовым характеристикам .

Читайте также:  Как выбрать инфракрасный обогреватель: классификация, советы и популярные модели

Данный параметр позволяет, не только учесть время срабатывания конкретного автомата защиты, но и обеспечить безопасность всей цепи, предотвратив её отключение при коротком замыкании либо перенапряжении.

Селективность время токовых характеристик автоматических выключателей позволяют при неисправностях отключить только один автомат, и только часть приборов и оборудования, которые он питает. При верном расчёте времятоковых характеристик будет отключён автомат, который расположен ближе всего к неисправному потребителю или месту короткого замыкания.

Чтобы отключение первого ряда автоматов защиты, которые обеспечивают питание всего помещения или помещений, не произошло вследствие замыкания, его времятоковые характеристики должны быть выше. То есть, главные автоматы защиты по времени срабатывания будут больше, чем автоматика второго ряда.

Определяется времятоковая характеристика автоматических выключателей по буквенному значению в наименовании. Различают четыре уровня времятоковых характеристик — A,B,C и D.

  • Уровень «А» отличается повышенной чувствительностью. Такие автоматы могут быть использованы только для самых маломощных приборов, например, при организации участка цепи с освещением ;
  • Уровень «В» имеет также высокую чувствительность, но автомат уже можно будет установить для защиты нескольких не слишком мощных бытовых приборов;
  • Уровень «С» является оптимальным вариантом для бытового применения, так как свободно выдерживает перепады в сети при работе мощных приборов. Также срабатывает в случае перенапряжения или КЗ маломощного оборудования, включая осветительные приборы;
  • Уровень «D» имеет наименьшую чувствительность и устанавливается на таком оборудовании, как печи и кондиционеры.

Преимущества селективности автоматики

Итак, проведя расчёты и сверившись по всем показателям селективности, мы добиваемся обеспечения защиты. То есть, селективность автоматических выключателей позволяет:

  • Обеспечить максимальный уровень безопасности для людей и используемого оборудования;
  • Автоматически определить зону неисправности и локализовать данный участок без отключения питания всех помещений;
  • Поддерживать качественную работу и своевременное отключение для сохранения работоспособности оборудования.

Источник: http://obelektrike.ru/posts/selektivnost-i-vremja-tokovye-harakteristiki-avtomaticheskih-vykljuchatelej/

Селективность автоматических выключателей

Здравствуйте, уважаемые читатели блога elektrobiz. ru! Сегодня поговорим о том, что такое селективность, для чего она нужна и как соблюсти это явление в электрической цепи в квартире, загородном доме, на даче.

Стоит начать с самого термина, чтобы максимально понять, что собой представляет данное свойство.

Что такое селективность:

Селективность — это специфическая особенность релейной защиты выявить повреждённый элемент проводки (замыкание, перегрузка) и отключить его близлежащими выключателями, не прекращая нормальную работу остальных зон электрической цепи. К примеру, при обычном коротком замыкании кондиционера, в первую очередь, отключается предохранитель питающий непосредственно кондиционер:

Основная и главная цель — безопасность. Кроме того упрощается поиск причины отключения, только представьте, что при замыкании в розетке у вас отключается весь подъезд. Попробуйте потом разобраться, что где как и почему
В каждый автоматический выключатель входит в 2 независимых друг от друга системы защиты:

  • От короткого замыкания
  • От перегрузки

При перегрузке:

Существует такое понятие как «номинальный ток автоматического выключателя».

Номинальный ток выбирается из разряда:   6, 10, 13, 16, 20, 25, 32, 40, 50, 63 А (ампер).

При составлении проекта электроснабжения, например, нужно рассчитать ток через каждый автомат.

Тогда селективность будет соблюдаться автоматически. Такое свойство называют естественной селективностью автомата в диапазонах токов перегрузки.

При коротком замыкании:

Автоматические выключатели так же имеют вторую систему защиты, это «быстродействующая защита от короткого замыкания».

Производят автоматы номинальным условным током короткого замыкания: 3, 4.5, 6, 10 кА (килоампер) .  Так же существует такая характеристика как «время размыкания цепи».

Эти две величины независимы друг от друга, но лучше соблюдать селективность по двум параметрам единовременно. Оба параметра учитываются типом автоматического выключателя: А, В, С, D.

Чаще всего в быту применяются автоматы типа С и если в вашей электросети последовательно включено не более 2 (двух) автоматов, в достижении селективности не возникнет проблем. Если же у вас последовательно включено 3 (три) и более автоматических выключателя, лучше обратиться к специалисту, для принятия специальных мер.

На этом мы подошли к концу пояснения понятия селективности автоматов. Все написанное касаемо диапазонов токов перегрузки, можно применять и к дифференциальным автоматическим выключателям, которые имеют еще два дополнительных вида защиты: по току утечки и току короткого замыкания. Об этом в другой раз.

Для закрепления знаний, предлагаю вам прокомментировать соблюдение селективности в квартире:

Подъездный щиток:

В квартире:
 

Источник: https://elektrobiz.ru/zametki-elektrika/selektivnost-avtomaticheskix-vyklyuchatelej.html

Селективность – это свойство защиты определять неисправный элемент

Эксплуатация электрических сетей с самого начала их появления изменилась до неузнаваемости. И в первую очередь упор был сделан на безопасность. И это понятно. Поэтому системы защиты всегда усовершенствуются, этот процесс никогда не останавливался.

Но тут перед разработчиками встала задача определения неисправностей по мере их серьезности. То есть, существуют ситуации, которые можно отнести к ненормальным, но приемлемым.

Совет

Есть ситуации, которые требуют оперативного вмешательства в виду возможности появления короткого замыкания и выхода из строя части электроустановки. Поэтому система защиты строилась на избирательности или селективности.

Итак, селективность – это качество защитной системы отличать неисправности электрических сетей или установок, выявлять их и отключать от работающих в нормальном режиме.

Виды

Современные системы электрической защиты могут иметь селективность:

  • Абсолютную.
  • Относительную.

В первом случае защита действует только в своей зоне. Во втором случае не только в собственной зоне, но и в соседней. При этом относительная селективность обеспечивается дополнительными приборами с разными функциями. К примеру, с определенной выдержкой времени, при котором он будет срабатывать.

Существует специальный стандарт, в котором определяются все виды селективности, его номер ГОСТ Р 50030.1. В этом документе подробно расписано, по каким критериям разделяется данное понятие. Рассмотрим основные.

Селективность по сверхтокам

В первую очередь обозначим, что такое сверхтоки. Это показатели электрического тока, которые превосходят параметры тока номинального. Это касается в первую очередь силы и напряжения.

Поэтому селективность в данном случае координирует работу нескольких устройств по установленным показателям. При этом учитывается тот факт, что каждое устройство имеет свой диапазон срабатывания.

Остальные же не реагируют на изменения параметров сети. То есть, получается следующая схема.

Существует определенная селективность между двумя автоматическими выключателями, которые расположены в схеме последовательно.

Так вот со стороны нагрузки выключатель разрывает цепь. А со стороны подачи тока он находится в замкнутом состоянии. То есть, последний обеспечивает током все остальные участки цепи.

Такая селективность называется частичная. Именно она обеспечивает неполную загрузку установки при необходимости устранить неполадки (короткое замыкание или перегруз) на одном участке.

При этом остальные работают в штатном режиме.

Источник: http://OnlineElektrik.ru/eoborudovanie/viklyuchatel/selektivnost-eto-svojstvo-zashhity-opredelyat-neispravnyj-element.html

Селективность защиты в схемах электроснабжения

Следует отметить, что в зоне действия неселективной (мгновенной) токовой отсечки вышестоящего аппарата (обычно при значительных токах короткого замыкания вблизи мощных источников питания, определяемых расчетным путем) селективность у ряда производителей так же может быть обеспечена за счет так называемого «рефлексного отключения», когда энергия замыкания рассеивается на нижестоящем аппарате, обладающем функцией токоограничения (быстрое отключение до достижения максимального пика тока менее, чем за 10 мс). В этом случае энергии замыкания, пропускаемой через вышестоящий аппарат недостаточно для его срабатывания.

     В распределительных щитах аварийного освещения и других систем обеспечения безопасности зданий необходимо обеспечить максимальную,  желательно полную селективность защиты.

В обоснованных случаях допускается частичная селективность, если максимальный ток короткого замыкания не выходит за пределы диапазона токов, при которых выполняется условие селективности.

Нельзя допустить, что бы при коротком замыкании в отдельной групповой линии отключился вышестоящий (вводной) аппарат защиты.

Обратите внимание

     Необходимо стремиться к уменьшению количества ступеней, используя, где это допустимо, на вводе в щиток выключатель нагрузки. В этом случае селективность должна быть обеспечена между автоматическими выключателями групповых линий и автоматическим выключателем, защищающим распределительную сеть.

При использовании выключателей нагрузки на вводе в щиток освещения удается значительно повысить надежность сети аварийного освещения в случае, если вышестоящий аппарат защиты обеспечивает полную селективность с групповыми аппаратами, по сравнению со схемой, когда на вводе в щиток предусматривают аппарат, обеспечивающий только частичную селективность. Если же вышестоящий аппарат, защищающий распределительную сеть, и и вводной аппарат в щиток, предусматриваются одинаковыми (обеспечивающими селективность с групповыми аппаратами), то это ведет к удорожанию и, как правило нерациональному усложнению схемы. При этом данные аппараты работают между собой не селективно. Селективное же их выполнение приводит к завышению вышестоящей защиты, увеличению сечений питающих линий и к неоправданным затратам. Поэтому подобные решения следует применять только в обоснованных случаях (например, при необходимости разделения зон ответственности эксплуатирующих организаций).  

     Часто в примечаниях к схеме распределительного щита можно увидеть фразу: «Допускается использовать оборудование других производителей, имеющее аналогичные параметры». Следует учитывать, что подбирать автоматические выключатели следует всегда с учетом их селективности.

     В электрощитах многих зданий, построенных 30 – 40 лет назад, можно увидеть стандартные электрические щиты, в которых вводной автоматический выключатель установлен с номинальным током 100 А и автоматические выключатели отходящих линий на 10  и 16 А.

Если расчетный ток такого щита не превышает 40 – 50 А, то иногда службы эксплуатации здания получают предписание установить в щит вводной автоматический выключатель, соответствующий расчетному току.

И когда в такой щит устанавливают современный аппарат защиты, то при коротком замыкании в любой отходящей линии могут отключиться и вводной и групповой аппарат и даже только вводной автоматический выключатель. В щитах аварийного освещения подобное недопустимо.

     Автор выражает глубокую признательность Сергею Волкову (АО «Атомэнергопроект»),  за полезные советы и рекомендации, сделанные при подготовке статьи.

                                                                                                                           Виктор Чернов

Источник: https://electromontaj-proekt.ru/nashi-stati/proektirovanie/selektivnost-zashchity-v-shemah-elektrosnabzheniya/

Выбор автоматических выключателей

Выбор автоматических выключателей должен вестись, исходя из параметров проводов и кабелей, по условиям защиты от перегрузок, по режиму короткого замыкания, по селективности, по типу время-токовой характеристики. Время отключения теплового расцепителя.. Предельная отключающая способность автоматического выключателя..

Координация аппаратов защиты.. Таблица селективности.. Номинальный ток автоматического выключателя..

Выбору автоматов  должен предшествовать расчет электрических нагрузок и выбор сечений проводников.

 
Еще раз подчеркну, что автоматические выключатели защищают линии электрических сетей (провода и кабели) от перегрузок и сверхтоков коротких замыканий.

Поэтому расчет и выбор автоматических выключателей в первую очередь должен вестись, исходя из параметров проводов и кабелей (тип изоляции, материал и сечение токопроводящей жилы, количество жил). Точнее говоря — из предельно допустимой токовой нагрузки проводника.

 
Кроме того, аппарат защиты должен соответствовать еще ряду критериев правильного выбора.

Критерии выбора автоматических выключателей
Автоматические выключатели рассчитываются и выбираются:• по условиям защиты от перегрузок;• по типу время-токовой характеристики;• по режиму короткого замыкания;

• по селективности;

Выбор АВ по условиям защиты от перегрузок

Автоматические выключатели имеют следующие виды защиты — тепловая, электромагнитная или комбинированная (тепловая и электромагнитная). В соответствии с СП31-110–2003 во внутренних сетях жилых зданий, как правило, следует применять автоматические выключатели с комбинированными расцепителями.
Для защиты от перегрузок предназначена тепловая защита. Параметром, определяющем ток срабатывания теплового расцепителя, является номинальный ток автоматического выключателя.
Рабочая характеристика автоматического выключателя должна отвечать условиям:

Iр.max  ≤ Iн.а ≤ Iд.н ,      (1)

где  Iд.н  — предельно допустимый номинальный ток нагрузки проводника при расчетной температуре, А;
Iр.max  – максимальный расчетный ток нагрузки, А.
Iн.а — номинальный ток автоматического выключателя, защищающего проводник, А

Пример 1. Выберем вводной автомат по защите от перегрузок.
Расчетные данные:
• максимальный расчетный ток на вводе Iр.max = 27,5 А;
• марка кабеля ВВГнг 3х10;

Читайте также:  Посудомоечная машина indesit dsr 15b3 ru: отзывы, обзор технических характеристик, сравнение с конкурентами

ПУЭ изд.7, табл.1.3.4. Кабель ВВГнг 3х10 выдерживает при расчетной температуре длительный номинальный ток, равный 50А. Это значение тока совпадает со стандартным значением номинальных токов выключателей. Поэтому в соответствие с условием (1) выбираем номинальный ток автоматического выключателя, равным 50А. Для вводного автомата  предварительно выбираем ВА47-29 D50.

Пример 2. Выберем автоматический выключатель для групповой розеточной сети.
Дано:
• максимальный расчетный ток розеточной сети Iр.max = 6,4 А;
• марка кабеля ВВГнг 3х2,5;

Смотрим ПУЭ, табл. 1.3.4. Сечению кабеля 3х2,5 соответствует допустимый длительный ток нагрузки Iр.max = 21 А. В соответствии с условием (1) выбираем (в меньшую сторону) ближайшее стандартное значение номинального тока выключателя Iн.а  = 20 А.
Для розеточной сети выбираем ВА47-29 С20.

Время отключения теплового расцепителя зависит от значения тока перегрузки и время-токовой характеристики автоматического выключателя.

Время-токовая характеристика покозана на рис.1. Рассмотрим ее внимательно:

                 Рис.1
• характеристика комбинированного расцепителя имеет две ступени. Участок характеристики с плавной зависимостью времени срабатывания выключателя от тока отвечает за тепловую защиту. Участок справа (мгновенное расцепление) характеризует работу выключателя в режиме короткого замыкания.
 • время-токовая характеристика состоит из двух линий. Область графика, ограниченная этими двумя линиями, называется зоной срабатывания. Она определяется погрешностью теплового и электромагнитного расцепителей, погрешностью уставок, температурными условиями.
• верхний участок характеристики не пересекается с осью времени. Это означает, что тепловая защита надежно срабатывает лишь при токе нагрузки, превышающем номинальный ток выключателя.

Делаем выводы:
• время срабатывания тепловой защиты обратно пропорционально току перегрузки.
Действительно, если при кратности номинального тока, равной 2 тепловой расцепитель может сработать в интервале времени от 15сек. до 2минут, то при кратности 1,5 в интервале времени от 1мин. до 40мин.
• для надежного срабатывания теплового расцепителя требуется ток, превышающий номинальный ток автоматического выключателя (согласно ГОСТ Р 50571.5-94 его практически принимают равным току срабатывания при заданном времени срабатывания для автоматических выключателей).

Все то время, которое необходимо для срабатывания теплового расцепителя, провода и кабели будут работать с перегрузкой, а значит нагреваться. Поэтому к выбору аппаратов защиты линий электрических сетей от перегрузок (в соответствии с сечением проводов и кабелей) нужно подходить с особой ответственностью.

Выбор автомата по типу время-токовой характеристики

Важно

Время-токовая характеристика – это кривая, построенная в координатах тока и времени и отражающая взаимосвязь этих параметров в определенных условиях эксплуатации. Международный стандарт МЭК 60898–95 определяет три типа характеристик мгновенного расцепления: В, С и D.

Автоматические выключатели российских производителей выпускаются по ГОСТ Р 50345, который полностью соответствует МЭК 60898–95. 
На рис.2 представлены все три типа время-токовых характеристик:

                                     Рис.

2
Здесь на вертикальной шкале — время срабатывания автоматического выключателя в секундах, а на горизонтальной шкале – отношение тока нагрузки к номинальному току автоматического выключателя. На графиках видно, что области срабатывания выключателей с характеристиками В, С и D сдвинуты по оси токов.

Диапазоны мгновенного расцепления выключателя в зависимости от кратности сверхтока по отношению к номинальному Iн.а приведены ниже:

Тип время-токовой характеристики                              Диапазон кратности  I/Iн.

а
                    В                                                                              от 3 до 5  
                    С                                                                              от 5 до 10 
                    D                                                                              от 10 до 14

Выбор автоматических выключателей по типу защитных характеристик производится, исходя из характера нагрузки. В электрических сетях жилых зданий в основном используются автоматические выключатели с характеристиками типов В и С. В электроустановках, где нагрузка носит индуктивный характер и имеют место значительные пусковые токи, нужно использовать выключатели с расцеплением типа D.

Выбор автоматического выключателя по режиму короткого замыкания

При выборе автоматических выключателей по режиму короткого замыкания защитный аппарат проверяется по номинальной отключающей способности и времени отключения полного тока КЗ.
Номинальная отключающая способность – максимальный ток короткого замыкания, который данный автомат способен отключить и остаться в работоспособном состоянии.

ГОСТ Р 50345 определяет следующие стандартные значения номинальной отключающей способности :

1500, 3000, 4500, 6000, 10 000 (А).

Для выбора выключателя по отключающей способности нужно рассчитать токи  КЗ на шинах вводного устройства, на шинах распределительного щита и у наиболее удаленного потребителя.

Отметим, что для расчета режима КЗ на всех участках проектируемых сетей проектировщику необходимо знать токи КЗ на высокой стороне подстанции или шине РУНН, а это находится в компетенции электроснабжающей организации. Обычно эти вопросы согласовываются со специалистами электросетей при оформления заявки на получение ТУ.

Важно, чтобы ток КЗ в точке присоединения был вписан в ТУ.
Выполнив расчет режима короткого замыкания в проектируемых сетях, выбирают аппараты защиты по номинальной отключающей способности.

В соответствии с ГОСТ Р 50571.5-94 п. 434.3.

2:
• время отключения полного тока КЗ в любой точке сети не должно превышать времени, в течение которого температура проводников достигает предельно допустимого значения.
Значения предельно допустимых температур нагрева проводников при КЗ приведены в ПУЭ, п. 1.4.

16
• для короткого замыкания продолжительностью до 5 с время t, в течение которого превышение температуры проводников от наибольшего значения допускаемой температуры в нормальном режиме до предельно допустимой температуры может быть приблизительно подсчитано по формуле:

√t = K∙ S/I

где t — продолжительность, с;
S — сечение, мм2;
I — действующее значение тока короткого замыкания, А;
K = 115 — для медных проводников с поливинилхлоридной изоляцией;
K = 135 — для медных проводников с резиновой изоляцией, с изоляцией из сшитого полиэтилена;
K = 74 — для алюминиевых проводников с поливинилхлоридной изоляцией;
K = 87 — для алюминиевых проводников с резиновой изоляцией, с изоляцией из сшитого полиэтилена;

ПУЭ п.1.4.16. Температура нагрева проводников при КЗ должна быть не выше следующих предельно допустимых значений, º С

Шины:

медные

300

алюминиевые

200

стальные, не имеющие непосредственного соединения с аппаратами

400

стальные с непосредственным присоединением к аппаратам

300

Кабели с бумажной пропитанной изоляцией на напряжение, кВ:

до 10

200

20 — 220

125

Кабели и изолированные провода с медными и алюминиевыми жилами и изоляцией:

поливинилхлоридной и резиновой

150

полиэтиленовой

120

Медные неизолированные провода при тяжениях, Н/мм2:

менее 20

250

20 и более

200

Алюминиевые неизолированные провода при тяжениях, Н/мм2:

менее 10

200

10 и более

160

Алюминиевая часть сталеалюминиевых проводов

200

ПУЭ, таблица 1.7.1

Наибольшее допустимое время защитного автоматического отключения для системы TN

    Номинальное фазное напряжение U0, В

          Время отключения, с

127

0,8

220

0,4

380

0,2

Более 380

0,1

Пример 3. Проверим выбранный автомат на вводе на соответствие расчетным токам КЗ и допустимому времени защитного отключения.
Дано:
• вводной автомат ВА47-29 D50 с отключающей способностью 4,5кА (справочные данные);
• расчетный ток КЗ на шине ВРУ —  2,5 кА (результаты расчетов);
• марка кабеля ВВГнг 3х10

Отключающая способность выбранного автомата 4,5 кА превышает расчетный ток КЗ 2,5 кА.
Время отключения вводного автомата при токе КЗ = 2,5 кА определим по формуле:

√t = КS/I  ;     t =(КS/I)2 = (115∙10/2500)2 = 0,21 сек.

В соответствие с табл. 1.7.1 расчетное время отключения не превышает допустимого значения (0,21 сек.

Таким образом, вводной автоматический выключатель по режиму КЗ выбран правильно.

Пример 4. Проверим автомат для групповой розеточной сети на соответствие расчетным токам КЗ и допустимому времени защитного отключения.
Дано:
• групповой автомат ВА47-29 С20 с отключающей способностью 4,5кА;
• расчетный ток КЗ  в конце линии  1,0 кА
• марка кабеля ВВГнг 3х2,5

Отключающая способность выбранного автомата соответствует расчетному току КЗ.
Время отключения тока КЗ = 1,0 кА определим по формуле:

√t = КS/I  ;     t =(КS/I)2 = (115∙2,5/1000)2 = 0,1 сек.

Расчетное время отключения также не превышает допустимого значения.

Выбор автоматического выключателя по селективности

Селективностью называют свойство аппаратов защиты отключать только поврежденный участок. С учетом этого, селективность должна быть обеспечена между защитными аппаратами высокой стороны питающего трансформатора и вводным автоматом на низкой стороне, между вводным автоматом на низкой стороне и автоматами отходящих линий и т. д.

Решение проблемы селективности сводится к обеспечению отключения защищаемой цепи аппаратом защиты со стороны нагрузки до того, как отключение начнет аппарат защиты со стороны питания.

При решении этой задачи можно выделить три характерных уровня системы электроснабжения (см. рис. 3), каждый из которых имеет различные особенности и предъявляет свои требования к аппаратам защиты по селективности.

Рис.

3

Для уровней А и Б характерны следующие особенности:
• повышенные требования к бесперебойности электроснабжения, так как ложное срабатывание аппарата на этих уровнях приводит к отключению большого числа потребителей;
• относительно высокие значения токов короткого замыкания в силу близости к источнику питания;
• большие номинальные токи, так как вся нагрузка нижерасположенной сети питается от этих секций.

Между аппаратами на ГРЩ и нижестоящими аппаратами наиболее часто используется временная селективность. Этот вид селективности обеспечивается за счет смещения или сдвига времятоковых характеристик последовательно расположенных автоматических выключателей по оси времени (см. рис. 4).

Рис. 4. Временная селективность

Уровень В. Конечное распределение

Основными требованиями этого уровня, как правило, являются обеспечение эффективного токоограничения и электробезопасность (т.к. аппараты этого уровня наиболее часто защищают непосредственно конечного потребителя). Поэтому на этом уровне применяются модульные токоограничивающие автоматические выключатели.

Этот случай, когда рассматриваемая пара автоматических выключателей относится к токоограничивающим, является наиболее сложным видом координации защитных аппаратов.
Поэтому координация токоограничивающих аппаратов согласно МЭК 60947.2 (ГОСТ 50030.2) может быть гарантирована только производителем, который обязан проводить испытания и подтверждать таким образом этот тип координации. Результатом этих испытаний и гарантией обеспечения селективности между токоограничивающими аппаратами являются специальные таблицы селективности, которые имеются в каталогах фирм-производителей оборудования. Такие таблицы разработаны для профессиональных серий защитных аппаратов.

Кроме рассмотренной временной селективности, еще есть следующие виды селективности :

• токовая селективность, которая предполагает смещение или разнесение время-токовых характеристик последовательно расположенных защит по оси тока;
• зонная или логическая селективность — реализуется между двумя аппаратами защиты, объединенными специальным каналом связи. Когда расположенный ниже аппарат обнаруживает повреждение, он посылает сигнал вышестоящему выключателю, который начинает отсчет выдержки времени. Если за это время расположенный ниже выключатель не в состоянии отключить возникшее повреждение, то срабатывает выключатель, расположенный выше.

Селективность по току обеспечивается путем задания различных уставок автоматических выключателей (максимальной токовой отсечки). Более высокие уставки имеют автоматические выключатели на стороне питания. Эти решения приемлемы для уровней А (ГРЩ) и уровня Б (вторичное распределение) системы электроснабжения, т. е. для больших автоматов, расцепители которых всегда можно подстроить. При конечном распределении электроэнергии (уровень В), где главным образом используются модульные токоограничивающие автоматы (бюджетные серии), селективность не обеспечивается или возможна только частичная селективность.
Например, в бытовом жилом секторе токи КЗ на вводе в дом и у самого удаленного потребителя будут отличаться незначительно (сети, как правило, короткие). При токах КЗ от 1000 до 3000 А, характерных для таких сетей, модульные автоматические выключатели в аварийной групповой сети и на вводе будут срабатывать практически одновременно. Чтобы этого не происходило, можно установить на вводе вместо вводного автомата выключатель нагрузки. Сделать это несложно, поскольку малогабаритных разъединителей нагрузки с установкой на дин-рейку на рынке предостаточно. В этом случае при КЗ будет отключаться только аварийная групповая линия.

Совет

При перегрузках селективную работу автоматических выключателей обеспечить просто. Для этого достаточно, чтобы номинальный ток автомата со стороны питания был больше номинального тока автоматического выключателя со стороны потребителей.

Источник: http://vgs-design-el.blogspot.com/2013/08/blog-post.html

Ссылка на основную публикацию