Как произвести расчет ветрогенератора: формулы + практический пример расчета

Как сделать расчет ветрогенератора

Методика расчета мощности ветроколеса ветрогенератора относительно точная и довольно простая.

Ниже формула расчета мощности энергии ветра P=0.6*S*V^3, где

P- мощность Ватт

S- площадь ометания кв.м.

V^3- Скорость ветра в кубе м/с

r- радиус окружности в квадрате

К примеру если взять площадь винта 3кв.м. и посчитать мощность на ветре 10 м/с, то получится 0,6*3*10*10*10=1800ватт. Но это мощность ветрового потока, а винт заберет часть мощности, которая в теории может достигать 57%, но на практике для горизонтальных трехлопастных ветрогенераторов этот параметр 35-45%. А для вертикальных типа Савониус 15-25%.

Обратите внимание

Тогда в среднем для горизонтального трехлопастного винта коэффициент использования энергии ветра поставим 40% и посчитаем, 1800*0,4= 720 ватт. Винт заберет 720 ватт у ветра, но еще есть КПД генератора, который у генераторов на постоянных магнитах примерно 0,8 , а с электровозбуждением 0,6. Тогда 720*0,8=576 ватт.

Но на практике все может быть гораздо хуже, так-как генератор не во всех режимах работы имеет высокий КПД, так-же eсть потери в проводах, на диодном мосту, в контроллере, и в аккумуляторе. Поэтому можно скинуть смело еще 20% мощности и останется примерно 576-20%=640,8 ватт.

Обратите внимание

У вертикального ветрогенератора это параметр будет еще меньше так-как во-первых КИЭВ всего 20%, а так-же мультипликатор, КПД которого 70-90%.

Тогда изначальные из 1800 ватт мощности ветра лопасти отнимут 1800*0,2=360ватт. Минус КПД генератора 0,8 и мультипликатора 0,8 равно 360*0,8*0,8=230,4ватт.

И еще минус 20% на потери в проводах, диодном мосту, контроллере и АКБ., и останется 230,4-20%=183,6ватт.

Из реальной жизни практический расчет мощности ветрогенератора.

Эту формулу можно встретить на многих форумах и сайтах по ветрогенераторам. Для проверки формулы я хочу сравнить реальные данные двух ветрогенераторов небольшой мощности с почти одинаковыми по площади винтами, но один горизонтальный, а второй вертикальный.

На фото два реальных самодельных ветрогенератора, первый горизотальный трехлопастной с диаметром винта 1,5м., второй вертикальный шириной 1м высотой 1,8м. Не считая данные сразу напишу что мощность горизонтального на ветру 10м/с около 90 ватт, и вертикального 60ватт.

КИЭВ первого так-как лопасти сделаны на глазок наверно 0,3 , а второго вертикального вроде хорошо сделанного 0,2.

Теперь вычислим площадь винта ометаемую ветром, для первого это 1,76м, для второго вертикального 1,8м.

значит для горизонтального 0,6*1,76*10*10*10=1056*0,3*0,8-20%=202ватт.

значит для вертикального 0,6*1,8*10*10*10=1080*0,2*0,8-20%=138ватт.

Получились вот такие теоретические данные, но зная реальные становится становится понятно что КИЭВ обоих ветрогенераторов и КПД их генераторов далек от хороших показателей.

Важно

В таком случае для большинства самодельных генераторов, которые делаются на глазок без расчетов можно смело скидывать еще 50% и получить в итоге реальную ожидаемую мощность от ветроустановки с ветроколесом определенной площади.

Реальная мощность самодельного ветрогенератора.

Горизонтальный ветрогенератор мощностью 202ватт.-50%=101ватт, а реальных 90ватт.

Вертикальный ветрогенератор мощностью 138ватт.-50%=69ватт,а реальных 60ватт.

Уже продолжительное время интересуясь ветрогенераторами я сделал ( может и ошибочный) вывод что большинство самодельных ветроустановок далеки от заводских аналогов. Только лишь с применением точных расчетов можно добиться высокого КПД всей ветроустановки и это удается не многим.

А с большинства самодельных ветрогенераторов можно при расчете мощности смело скидывать половину ожидаемой мощности и сразу делать ветрогенератор в два раза мощнее чем нужен, чтобы компенсировать все недочеты домашней сборки и применяемых материалов.

Расчет мощности ветроколеса
Как расчитать диаметр и мощность ветрогенератора, в принципе все достаточно просто.Формула для расчета ветроколеса, а так-же реальные примеры расчетов мощности.

Источник: e-veterok.ru

В связи с ростом цен на энергоносители, все больше владельцев частных домов обращаются к возобновляемых и нетрадиционных источников энергии (ВНИЭ), таких как ветровая, солнечная, гидроэнергия и геотермальная. Здесь расскажем, как рядовому гражданину нашей страны рационально и доступно, с финансовой точки зрения, можно воспользоваться энергией ветра.

Перед тем как будет продемонстрирован пример выбора ветроэлектростанции (ВЭС), следует узнать, каким образом поток воздуха трансформируется в электрическую энергию и сколько такой энергии можно будет получить на своем участке. По приведенной формуле можно рассчитать энергию, которая «гуляет» вашим участком:

Например, на площадь, равной 3 кв.м дует воздушный поток обычной плотности со скоростью 5 м/с. При таких условиях получим:

Где, V — скорость ветра, единица измерения — м/с ρ — плотность воздуха, единица измерения — кг/м3

S — площадь, на которую дует (пожимает) воздушный поток, единица измерения — м2

Почти 2 кВт, в идеале, если не учитывать ту часть потока, которая пойдет на завихрения, обтекание объекта и т.д. В реальных условиях максимально мы можем получить 30-40% от потенциальной энергии воздушного потока. Это ограничение связано с технологическим и физическим выполнением ветрогенератора. Более точный расчет можно сделать по следующей формуле:

Где, ξ — коэффициент использования энергии ветра (в номинальном режиме для быстроходных ветряков достигает максимум ξmax = 0,4 ÷ 0,5), безмерная величина R — радиус ротора, единица измерения — м V — скорость воздушного потока, единица измерения — м / с ρ — плотность воздуха, единица измерения — кг/м3 ηред — КПД редуктора, единица измерения — проценты

ηген — КПД генератора, единица измерения — проценты

Для следующих данных: ξ = 0,45 R = 2 м V = 5 м / с ρ = 1,25 кг/м3 ηред = 0,9

ηген = 0,85

Источник: https://avtonomny-dom.ru/vetrogeneratoryi/raschet-vetrogeneratora-2.html

Как произвести расчет ветрогенератора: формулы + практический пример расчета

Альтернативная энергия, получаемая от энергетических ветряных установок, вызывает в обществе высокий интерес. Подтверждений тому на уровне реальной бытовой практики множество.

Владельцы загородной недвижимости строят ветряки собственными руками и довольствуются полученным результатом, хотя результат бывает и кратковременным. Причина — при постройке установки не был произведён расчёт ветрогенератора должным образом.

Расчёт ветрогенераторной установки

С чего начать рассчитывать систему воспроизводства электроэнергии из энергии ветра? Учитывая, что речь идёт о ветрогенераторе, логичным видится предварительный анализ розы ветров в конкретной местности.

Такие расчётные параметры, как скорость ветра и характерное его направление для данной территории – это важные расчётные параметры. Ими в какой-то степени определяется тот уровень мощности ветряка, который будет реально достижим.

Ветрогенераторы такой мощности сложно даже представить. Но подобные конструкции существуют и эффективно работают. Однако расчёты подобных конструкций показывают относительно небольшую мощность по сравнению с традиционными источниками энергии

Совет

Что примечательно, процесс этот носит долговременный характер (не менее 1 месяца), что вполне очевидно. Вычислить максимально вероятные параметры скорости ветра и его наиболее частое направление невозможно одним или двумя замерами. Потребуется выполнить десятки замеров. Тем не менее, операция эта действительно необходима, если есть желание построить эффективную производительную систему.

Как рассчитать мощность ветряка

Ветрогенераторам бытового назначения, тем более сделанным своими руками, удивлять народ высокими мощностями ещё не приходилось. Оно и понятно. Стоит лишь представить массивную мачту высотой 8-10 метров, оснащённую генератором с размахом лопастей винта более 3 метров. И это не самая мощная установка. Всего-то около 2 кВт.

Для обслуживания ветряков такой мощности используются вертолёты и бригады специалистов, насчитывающие до десятка человек. Чтобы произвести расчёт такой энергоустановки, привлекается ещё большее число исполнителей

Вообще, если опираться на стандартную таблицу, показывающую соотношение мощности ветрогенератора и требуемого размаха лопастей винта, есть чему удивиться.

Согласно таблице, для ветряка мощностью 10 Вт необходим двухметровый пропеллер. На 500-ваттную конструкцию потребуется уже винт диаметром 14 метров.

При этом параметр размаха лопастей зависит от их количества. Чем больше лопастей, тем меньше размах.

Но это всего лишь теория, обусловленная скоростью ветра, не превышающей значения 4 м/сек. На практике всё несколько иначе, а мощность установок бытового назначения, реально действующих продолжительное время, ещё никогда не превышала 500 Вт. Поэтому выбор мощности здесь обычно ограничен диапазоном 250-500 Вт при средней скорости ветра 6-8 м/сек.

Таблица зависимости мощности ветряной энергетической системы от диаметра рабочего винта и количества лопастей. Эту таблицу можно применить для расчётов, но с учётом её составления под параметр скорости ветра до 4 м/сек

С теоретической позиции, мощность ветряной энергетической станции считают по формуле:

N=p*S*V3/2

Здесь p – плотность воздушных масс; S – общая обдуваемая площадь лопастей винта; V — скорость воздушного потока; N – мощность потока воздуха. Так как N – параметр, кардинально влияющий на мощность ветрогенератора, по сути, реальная мощность установки будет находиться недалеко от вычисленного значения N.

Расчёт винтов ветряных установок

При конструировании ветряка обычно применяются два вида винтов:

  • Вращение в горизонтальной плоскости (крыльчатые).
  • Вращение в вертикальной плоскости (ротор Савониуса, ротор Дарье).
  • Конструкции винтов с вращением в любой из плоскостей можно рассчитать при помощи формулы:

    Z= L*W/60/V

    Для этой формулы: Z – степень быстроходности (тихоходности) винта; L – размер длины описываемой лопастями окружности; W – скорость (частота) вращения винта; V – скорость потока воздуха.

    Такой выглядит конструкция винта под названием «Ротор Дарье». Этот вариант пропеллера считается эффективным при изготовлении ветрогенераторов небольшой мощности и размеров. Расчёт винта имеет некоторые особенности

    Отталкиваясь от этой формулы, можно легко рассчитать число оборотов W – скорость вращения. А рабочее соотношение оборотов и скорости ветра можно найти в таблицах, которые доступны в сети. Например, для винта с двумя лопастями и Z=5, справедливо следующее соотношение:

    Число лопастей
    Степень быстроходности
    Скорость ветра м/с

    2
    5

    330

    Обратите внимание

    Также одним из важных показателей винта ветряка является шаг. Этот параметр можно определить, если воспользоваться формулой:

    H=2πR* tg α

    Здесь: – константа (2*3.14); R – радиус, описываемый лопастью; tg α – угол сечения.

    Подбор генераторов для ветряков

    Имея расчётное значение числа оборотов винта (W), полученное по вышеописанной методике, можно уже подбирать (изготавливать) соответствующий генератор. Например, при степени быстроходности Z=5, количестве лопастей равном 2 и частоте оборотов 330 об/мин. при скорости ветра 8 м/с., мощность генератора приблизительно должна составлять 300 Вт.

    Генератор ветряной энергетической установки «в разрезе». Показательный экземпляр одной из возможных конструкций генератора домашней ветряной энергосистемы, собранной самостоятельно

    При таких параметрах подходящим выбором в качестве генератора для бытовой ветряной электростанции может стать мотор, который используется в конструкциях современных электровелосипедов. Традиционное наименование детали – веломотор (производство КНР).

    Так выглядит электрический веломотор, на базе которого предлагается делать генератор для домашнего ветряка. Конструкция веломотора идеально подходит для внедрения практически без расчётов и доработок. Однако мощность их невелика

    Читайте также:  Какой насос для подачи воды из бочки лучше выбрать?

    Характеристики электрического веломотора примерно следующие:

    Параметр
    Значения

    Напряжение, В
    24

    Мощность, Вт
    250-300

    Частота вращения, об/мин.
    200-250

    Крутящий момент, Нм
    25

    Положительная особенность веломоторов в том, что их практически не нужно переделывать. Они конструктивно разрабатывались как электродвигатели с низкими оборотами и успешно могут применяться под ветрогенераторы.

    Расчёт и выбор контроллера заряда

    Контроллер заряда АКБ необходим для ветряной энергетической установки любого типа, включая бытовую конструкцию.

    Расчёт этого устройства сводится к подбору электрической схемы прибора, которая бы соответствовала расчётным параметрам ветровой системы. Из тих параметров основными являются:

    • номинальное и максимальное напряжение генератора;
    • максимально возможная мощность генератора;
    • максимально возможный ток заряда АКБ;
    • напряжение на АКБ;
    • температура окружающего воздуха;
    • уровень влажности окружающей среды.

    Исходя из представленных параметров, ведётся сборка своими руками или подбор готового устройства контроля заряда аккумуляторов – контроллера.

    Контроллер заряда аккумуляторов, применяемых в составе ветровой энергоустановки. Прибор промышленного изготовления, выбирая который требуется лишь внимательно изучить технические характеристики для точного согласования с имеющейся системой

    Конечно, желательно подбирать (или собирать) устройство, схема которого обеспечивала бы функцию лёгкого старта в условиях течения слабых потоков воздуха.

    Контроллер, рассчитанный под эксплуатацию с батареями разного напряжения (12, 24, 48 вольт) тоже лишь приветствуется.

    Важно

    Наконец, при расчёте (подборе) схемы контроллера, рекомендуется не забывать о присутствии такой функции, как управление инвертором.

    Подбор аккумуляторной батареи для системы

    На практике используются аккумуляторы разного типа и почти все вполне пригодны для использования в составе ветряной энергетической системы. Но конкретный выбор придётся делать в любом случае. В зависимости от параметров системы ветряка, подбор аккумулятора ведётся по напряжению, ёмкости, условиям заряда.

    Традиционными комплектующими для домашних ветряков считаются классические кислотно-свинцовые аккумуляторы. Они показали неплохие результаты в практическом смысле. К тому же стоимость этого типа батарей более приемлема по сравнению с другими видами. Свинцово-кислотные АКБ особо неприхотливы к условиям заряда/разряда, но включать их в систему без контроллера недопустимо.

    Блок аккумуляторов домашнего ветрогенератора. Не самый лучший вариант эксплуатации, учитывая хаос из проводов и требования к хранению. При таком состоянии накопителей энергии рассчитывать на их долгосрочное действие не приходится

    При наличии в составе ветрогенераторной установи профессионально выполненного контроллера заряда, имеющего полноценную систему автоматики, рациональным видится применение аккумуляторов типа AGM или гелиевых. Оба вида накопителей энергии характеризуются большей эффективностью и долгим сроком службы, но предъявляют высокие требования к условиям заряда.

    То же самое относится к так называемым панцирным АКБ гелиевого типа. Но выбор этих аккумуляторов для бытового ветряка значительно ограничивается ценой.

    Однако срок службы этих дорогостоящих батарей самый продолжительный по отношению ко всем другим видам.

    Эти аккумуляторы выделяются также более значительным циклом заряда/разряда, но при условии применения к ним качественного зарядного устройства.

    Расчёт инвертора под домашний ветряк

    Сразу следует оговориться: если конструкция домашней энергетической ветроустановки содержит один аккумулятор на 12 вольт, смысл ставить инвертор на такую систему полностью исключается.

    Совет

    В среднем потребляемая мощность бытового хозяйства составляет не менее 4 кВт на пиковых нагрузках. Отсюда вывод: количество аккумуляторных батарей для такой мощности должно составлять не менее 10 штук и желательно под напряжение 24 вольта. На такое количество АКБ уже есть смысл устанавливать инвертор.

    Инвертор небольшой мощности (600 Вт), который может быть использован для домашней малой энергетической установки. Запитать от такой техники напряжением 220 вольт можно телевизор или небольшой холодильник. На лампы в люстре тока уже не хватит

    Однако чтобы обеспечить полностью энергией 10 аккумуляторов с напряжением по 24 вольта на каждый и стабильно поддерживать их заряд, потребуется ветряк мощностью не менее 2-3 кВт. Очевидно, для бытовых простеньких конструкций такую мощность не потянуть. Тем не менее, рассчитать мощность инвертора можно следующим образом:

  • Суммировать мощность всех потребителей.
  • Определить время потребления.
  • Определить пиковую нагрузку.
  • На конкретном примере это будет выглядеть так.

    Пусть в качестве нагрузки есть бытовые электроприборы: лампы освещения – 3 шт. по 40 Вт, телевизионный приёмник – 120 Вт, компактный холодильник 200 Вт. Суммируем мощность: 3*40+120+200 и получаем на выходе 440 Вт.

    Определим мощность потребителей для среднего периода времени в 4 часа: 440*4=1760 Вт. Исходя из полученного значения мощности по времени потребления, логичным видится подбор инвертора из числа таких приборов с выходной мощностью от 2 кВт. Опираясь на это значение, рассчитывается вольт-амперная характеристика требуемого прибора: 2000*0,6=1200 В/А.

    Классическая схема воспроизводства и распределения энергии, полученной от ветряного генератора бытового типа. Однако чтобы обеспечить долговременной энергией такое количество приборов, нужна достаточно мощная установка

    Реально нагрузка от домашнего хозяйства на семью в три человека, где имеется полноценное оснащение бытовой техникой, будет выше рассчитанной в примере. Обычно и по времени подключения нагрузки параметр превышает взятые 4 часа. Соответственно, инвертор ветряной энергосистемы потребуется более мощный.

    Выводы и полезное видео по теме

    Как происходит анализ исходных данных и как применяются формулы, представлено на видео:

    Пользоваться расчётными данными необходимо в любом случае.

    Будь то промышленная энергетическая установка или изготовленная под бытовые условия, расчёт каждого узла всегда несёт за собой максимум эффективности устройства и главное – безопасность эксплуатации.

    Зачастую предварительно выполненные расчёты определяют целесообразность реализации проекта, помогают установить, насколько затратным или экономным получается проект.

    Источник: https://tvoystroyka.ru/sovetyi/kak-proizvesti-raschet-vetrogeneratora-formyly-prakticheskii-primer-rascheta/

    Расчет мощности ветроколеса

    Методика расчета мощности ветроколеса ветрогенератора относительно точная и довольно простая.

    Ниже формула расчета мощности энергии ветра P=0.6*S*V^3, где P- мощность Ватт S- площадь ометания кв.м.

    V^3- Скорость ветра в кубе м/с Дополнительно формула расчета площади круга S=πr2, где π- 3,14 r- радиус окружности в квадрате К примеру если взять площадь винта 3кв.м. и посчитать мощность на ветре 10 м/с, то получится 0,6*3*10*10*10=1800ватт.

    Но это мощность ветрового потока, а винт заберет часть мощности, которая в теории может достигать 57%, но на практике для горизонтальных трехлопастных ветрогенераторов этот параметр 35-45%. А для вертикальных типа Савониус 15-25%.

    Обратите внимание

    Тогда в среднем для горизонтального трехлопастного винта коэффициент использования энергии ветра поставим 40% и посчитаем, 1800*0,4= 720 ватт. Винт заберет 720 ватт у ветра, но еще есть КПД генератора, который у генераторов на постоянных магнитах примерно 0,8 , а с электровозбуждением 0,6. Тогда 720*0,8=576 ватт.

    Но на практике все может быть гораздо хуже, так-как генератор не во всех режимах работы имеет высокий КПД, так-же eсть потери в проводах, на диодном мосту, в контроллере, и в аккумуляторе. Поэтому можно скинуть смело еще 20% мощности и останется примерно 576-20%=640,8 ватт.

    У вертикального ветрогенератора это параметр будет еще меньше так-как во-первых КИЭВ всего 20%, а так-же мультипликатор, КПД которого 70-90%. Тогда изначальные из 1800 ватт мощности ветра лопасти отнимут 1800*0,2=360ватт. Минус КПД генератора 0,8 и мультипликатора 0,8 равно 360*0,8*0,8=230,4ватт. И еще минус 20% на потери в проводах, диодном мосту, контроллере и АКБ., и останется 230,4-20%=183,6ватт.

    Из реальной жизни практический расчет мощности ветрогенератора

    Эту формулу можно встретить на многих форумах и сайтах по ветрогенераторам. Для проверки формулы я хочу сравнить реальные данные двух ветрогенераторов небольшой мощности с почти одинаковыми по площади винтами, но один горизонтальный, а второй вертикальный.

    На фото два реальных самодельных ветрогенератора, первый горизотальный трехлопастной с диаметром винта 1,5м., второй вертикальный шириной 1м высотой 1,8м. Не считая данные сразу напишу что мощность горизонтального на ветру 10м/с около 90 ватт, и вертикального 60ватт. КИЭВ первого так-как лопасти сделаны на глазок наверно 0,3 , а второго вертикального вроде хорошо сделанного 0,2. Теперь вычислим площадь винта ометаемую ветром, для первого это 1,76м, для второго вертикального 1,8м. значит для горизонтального 0,6*1,76*10*10*10=1056*0,3*0,8-20%=202ватт. значит для вертикального 0,6*1,8*10*10*10=1080*0,2*0,8-20%=138ватт.

    Получились вот такие теоретические данные, но зная реальные становится становится понятно что КИЭВ обоих ветрогенераторов и КПД их генераторов далек от хороших показателей. В таком случае для большинства самодельных генераторов, которые делаются на глазок без расчетов можно смело скидывать еще 50% и получить в итоге реальную ожидаемую мощность от ветроустановки с ветроколесом определенной площади.

    Источник: http://e-veterok.ru/rashet_vetrokolesa_vetrogeneratora.php

    Правильный расчет ветрогенератора: что нужно учитывать при подсчете мощности ветроколеса?

    Прежде чем приобрести или изготовить ветрогенератор, необходимо определиться с его мощностью, собственной потребностью в энергии и прочих параметрах устройства.

    Это принципиально важно при покупке ветряка, так как цены настолько велики, что приходится покупать устройство, которое пользователь сможет осилить по финансам.

    В некоторых случаях возможности оказываются настолько низкими, что приобретение уже не имеет смысла.

    Расчет мощности ветрогенератора

    Самостоятельное изготовление ветряка также нуждается в предварительном расчете.

    Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее.

    Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

    Произвести точный расчет с учетом всех факторов, воздействующих на ветряк, достаточно сложно. Для неподготовленных в теоретическом отношении мастеров такой расчет слишком сложен, он требует обладания множеством данных, недоступных без специальных измерений или расчетов.

    Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

    Как произвести?

    Для расчета ветрогенератора надо произвести следующие действия:

    • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
    • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
    • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач.  От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
    • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока
    Читайте также:  Что такое точка росы: ее связь со строительством + методика вычислений

    Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:

    P=k·R·V³·S/2

    Где P — мощность потока.

    K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

    R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м3.

    V — скорость ветра.

    S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

    Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

    Важно

    P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

    Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

    Что нужно учитывать?

    При расчете ветряка следует учитывать особенности конструкции ротора. Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

    Сооружение мачты может обойтись в большую сумму денег и значительные вложения труда. Кроме того, обслуживание ветряка, расположенного на высоте около 10 м над поверхностью земли чрезвычайно сложно и опасно.

    Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

    Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности.

    Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать.

    Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

    Реальная мощность самодельного ветрогенератора

    Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.

    Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.

    Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.

    Совет

    Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения.

    Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.

    Расчет параметров ветроколеса

    Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.

    Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.

    Формула быстроходности ветроколеса выглядит следующим образом:

    Z = L × W / 60 / V,

    Где Z — искомая величина (быстроходность),

    L — длина окружности, описываемой лопастями.

    W — частота (скорость) вращения крыльчатки.

    V — скорость ветра.

    Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.

    Сколько экономии энергии дает ветряк?

    Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.

    Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.

    Сколько электроэнергии вырабатывает?

    Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.

    Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.

    Минимальная скорость ветра для ветряка

    Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.

    Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.

    Рекомендуемые товары

    Источник: https://Energo.house/veter/raschet-vetrogeneratora.html

    Расчёт ветрогенератора | Альтернативные энергии

    Прежде чем приобретать для дома ветрогенератор, необходимо понимать, откуда берутся параметры его мощности, действительно ли он будет выдавать те параметры, что записаны в его паспорте, и на что вы можете рассчитывать.

    Скорость ветра

    Независимо от того, планируете ли вы купить готовый генератор, либо будете делать его сами, скорость ветра будет одним из важнейших параметров при определении мощности установки.

    Во-первых, у каждого типа ветрогенераторов есть своя начальная скорость работы. Для большинства установок это 2-3 м/с. Если скорость ветра ниже этого порога, работать генератор не будет вообще, и, соответственно, электричество вырабатывать тоже.

    Помимо начальной скорости, существует и номинальная, при которой ветрогенератор выходит на свою номинальную мощность. Для каждой модели производитель указывает эту цифру отдельно.

    Однако, если скорость выше начальной, но ниже номинальной, то и выработка электричества будет существенно снижена.

    А для того, чтобы не остаться без электричества, вам нужно всегда прежде всего ориентироваться на среднюю скорость ветра в вашем регионе и непосредственно на вашем участке.

    Первый показатель вы можете узнать, взглянув на карту ветров, либо посмотрев прогноз погоды в своём городе, где обычно указывается скорость ветра.

    Обратите внимание

    Вторая же цифра в идеале должна измеряться специальными приборами непосредственно в том месте, где будет стоять ветроустановка. Ведь ваш дом может быть как на возвышении, где скорость ветра будет выше, так и в низине, в которой ветра практически не будет.

    В данной ситуации те, кто постоянно страдает от ураганных порывов ветра, находятся в более выгодном положении, и могут рассчитывать на большую производительность ветрогенератора.

    Диаметр винта

    Если вы думаете, что ветрогенератор – это небольшая установка, которая буквально может стоять у вас на крыше и питать электричеством ваш дом на 100 кв.м., вы заблуждаетесь.

    Если установка используется как самостоятельный источник энергии, который должен обеспечить все ваши потребности, а не малую их часть, то винты могут быть на самом деле огромными.

    Для небольшого дома необходим радиус хотя бы 3-4 метра. Соответственно, диаметр – 6-8 метров.

    Потери

    Не достаточно просто рассчитать по формуле мощность вашей установки. Всегда существуют потери, которые заберут до 70% мощности. Первые потери, с которыми вы столкнётесь – это коэффициент использования энергии ветра. Он равен примерно 0,6.

    Далее потери будут на винте, который берёт от 40 до 50% мощности. Потери генератора составляют около 20%, а потери проводов – ещё 20%.

    Все эти параметры нужно учесть при планировании ветроустановки. Здесь приведены примерные потери. Реальные величины вы можете узнать в описании тех элементов, которые будете использовать. Они обычно указаны производителем.

    Простая и сложная формулы

    Существует две формулы, по которым вы можете определить мощность ветрогенератора, зная скорость ветра и радиус либо диаметр лопастей.

    Первая формула немного сложнее, и реже используется.

    Мощность = коэффициент использования энергии ветра * ((плотность возд. потока * скорость ветра в кубе)/2 * п * радиус в квадрате)

    Вторая формула несколько упрощена.

    Мощность = 0,6 * п * радиус в квадрате * скорость ветра в кубе

    Скорость ветра для расчёта стоит брать ниже среднегодовой, чтобы реально понимать, на какие цифры вам стоит рассчитывать.

    Расчёт

    Примеры расчётов для дачи и дома с учётом использования определённых электроприборов, мы рассмотрим в другой статье. Сейчас же выясним, какую реальную мощность нам может дать предлагаемый производителем ветрогенератор.

    Для примера рассмотрим ветрогенератор с длиной лопасти 4м, при средней скорости ветра 5 м/с (эта цифра может доходить и до 10-15, однако, мы рассмотрим менее удачный вариант.

    По первой формуле получится такая цифра:

    Мощность = 0,6 * (1,225 * 125/2) *3,14 * 16 = 2307,9 Вт.

    По второй формуле:

    Мощность = 0,6 * 3,14 * 16 * 125 = 3768 Вт.

    Вторая цифра ближе к реальности, и именно такую формулу стоит использовать в ваших подсчётах. Однако, давайте посчитаем потери на винт от второго результата.

    Мощность = 3768 * 0,6 = 2260.8 Вт.

    Уже намного ближе к первому результату. Однако, от этой цифры нам нужно отнять ещё потери генератора и проводов.

    Мощность = 2260.8 * 0,8 * 0,8 = 1446,9 Вт.

    Именно на такую величину вы можете рассчитывать при использовании ветрогенератора с винтами 4 метра. Конечно же, при более сильном ветре его мощность возрастёт, но этот параметр индивидуален для каждого дома.

    Источник: https://AllAlternativeEnergy.com/content/raschyot-vetrogeneratora

    Калькулятор расчета прогнозируемой мощности ветрогенератора — с пояснениями

    Рост цен на энергоносители заставляет многих владельцев домов задумываться над возможностью использования альтернативных источников энергии. Одним из вариантов видится использование ветрогенераторов.

    Источник – абсолютно легальный, так как никаких значимых ограничений по его использованию нет.

    И пока еще остается совершенно бесплатным – выработка электроэнергии таким способом в целях личного применения никакими налогами не облагается.

    Калькулятор расчета прогнозируемой мощности ветрогенератора

    Готовые ветровые энергетические установки – довольно дорогое удовольствие, поэтому домашние мастера начинают строить планы по самостоятельному их изготовлению.

    Но прежде чем приступать к реализации такого, признаемся, очень непростого и во многом спорного проекта, есть смысл хотя бы примерно прикинуть – какой же ожидается выход выработанной энергии.

    Важно

    Иными словами, будет ли какая-то реальная отдача взамен затраченных средств, усилий, времени. В этом вопросе, возможно, окажет помощь предлагаемый калькулятор расчета прогнозируемой мощности ветрогенератора.

    Читайте также:  Антигрибковое средство для стен: сравнительный обзор лучших вариантов

    Ниже будет дан ряд пояснений по проведению расчета. Сразу оговоримся – приведенный алгоритм предназначен для оценки только осевых горизонтальных ветрогенераторов.

    Калькулятор расчета прогнозируемой мощности ветрогенератора

    Перейти к расчётам

    Пояснения по проведению расчетов

    Следует правильно понимать – никакой, даже самый совершенный и напичканный современной электроникой генератор не берет энергию ниоткуда, и не способен выдать больше того показателя, который определяется скоростью ветра и размерами ветряка.

    Иными словами, даже в идеальных условиях можно получить только ту энергию, которая переносится ветровым потоком через определенную площадь.

    Понятно, что площадью выступает в данном случае площадь круга, образованного вращением лопастей горизонтального ветряка.

    Но весьма значительная часть этой энергии расходуется, так сказать, бесполезно – это создание завихрений воздуха, несоврешенсво крыльчатки, потери на силы трения в механике самого ветряка, системы передачи вращательного момента и в генераторе.

    Это банальный нагрев механизмов, потери в целях преобразования и передачи тока и многое другое. И считается очень неплохим показателем, если на выходе остается порядка 30÷40% от исходного энергетического потенциала.

    А на практике получается и того меньше.

    Значит, задумывая создание ветровой энергетической установки, следует оценить, какое же от неё ожидается поступление электрической энергии. Оно зависит от скорости ветра (в кубической зависимости) и диаметра ветряка (в квадратичной).

    Скорость ветра, понятное дело – величина непостоянная. Но для каждой местности рассчитаны среднегодовые показатели, на которые можно ориентироваться, если составляется прогноз на некоторую перспективу (месяц, год и т.п.). Эти показатели можно подсмотреть на карте схеме, размещённой ниже, но лучше все же уточнить в местной метеорологической службе.

    Совет

    Карта-схема среднегодовых скоростей ветра по регионам России

    Итак, если есть намётки по размерам лопастей создаваемого генератора, можно провести и расчет мощности. Формула уже заложена в алгоритм калькулятора.

    • Пользователю для начала предлагается указать скорость ветра. Некоторые пояснения на этот счет. Прогнозы  выработки электроэнергии на определенный период проводятся именно по среднегодовой скорости. А вот номинальная мощность ВЭУ обычно вычисляется по так называемой расчётной скорости ветра, которая может быть в 1,5÷2 раза выше.
    • Вторым пунктом указывается радиус ротора ветрогенератора, то есть расстояние от его оси до края лопасти.

    (Интересно, что от количества лопастей ничего в данном случае не зависит. Точнее, даже несколько обратная картина – если лопастей больше трех, то может стать только хуже, так как теряется скорость вращения).

    • Если известны показатели КПД самого генератора и системы передачи вращения (редуктора), то они указываются в соответствующих полях. Если таких данных нет – можно оставить без изменения по умолчанию.

    Остается нажать на кнопку расчета и получить результат. При вычислении от среднегодовой скорости ветра имеется возможность представить, какое количество энергии можно будет получить за определенный период.

    К великому разочарованию многих, показатели могут быть более чем скромными. Так что есть над чем подумать, прежде чем принимать какое-то решение.

    Ветрогенератор – насколько реалистичны возлагаемые на него надежды?

    Увы, говорить о простоте реализации такого проекта и обретении бесплатного источника энергии, который решит все проблемы — было бы большим преувеличением. Для начала следует реально оценить и приобретаемые выгоды, и неизбежные немалые затраты, и собственные возможности. Надеемся, в этом поможет публикация нашего портала «Ветрогенератор своими руками».

    Источник: https://stroyday.ru/kalkulyatory/elektroxozyajstvo-kalkulyatory/kalkulyator-rascheta-prognoziruemoj-moshhnosti-vetrogeneratora.html

    открытая библиотека учебной информации

    Задача 1 Рассчитать мощность ветроустановки с радиусом ротора R м при стартовой скорости ветра V м/с, коэффициентом использования ветра , КПД редуктора – ηред; КПД генератора – ηген.

    Задача 2. При какой скорости ветра ветроустановка будет генерировать количество энергии, достаточное для обеспечения энергией среднего котеджного домика при радиусе ротора R м, коэффициенте использования ветра – ; КПД редуктора – ηред; КПД генератора – ηген.

    Расчет ветрогенератора производят по алгоритму:

    1. Мощность ветроустановки равна

    ,

    где — коэффициент полезного действия генератора и трансмиссии (обычно равен 0.8 — 0.9);

    — мощность ветротурбины.

    2. Мощность турбины составляет

    ,

    где — коэффициент ветроиспользования. Принципиально отличается от КПД тем, что «недополученная» мощность, в основном, не является потерями, а остается в потоке. По разным теориям максимальное значение коэффициента ветроиспользования идеального устройства составляет 0.

    59 — 0.68. Это легко понять, представив крайнюю ситуацию, когда у потока отбирается 100% энергии. В таком случае поток должен полностью остановиться, что уже противоречит его наличию. Реальный коэффициент ветроиспользования хорошо спроектированной турбины составляет 0.4-0.

    55;

    — мощность ветрового потока, проходящего через ометаемую ветротурбиной площадь.

    4. Мощность потока вычисляется по формуле

    ,

    где — плотность воздуха (стандартное значение 1.225 кг/м3);

    V — скорость невозмущенного ветрового потока;

    S = пD2/4 — ометаемая площадь.

    Более точный расчет можно провести по формуле:

    ,

    где, ξ — коэффициент использования энергии ветра (в номинальном режиме для быстроходных ветряков достигает максимум ξmax = 0,4 ÷ 0,5), безмерная величина

    R — радиус ротора, м

    V — скорость воздушного потока, м/с

    ρ — плотность воздуха, кг/м3

    ηред — КПД редуктора, %

    ηген — КПД генератора, %.

    Для обеспечения энергией среднего котеджного домика крайне важно иметь установку средней мощности 3 КВт.

    Величины и единицы их измерения Варианты заданий
    R, м 2,3 2,2 2,1 2,0 1,9 1,8 1,9 2,0 2,1 2,2
    V, м/с 4,7 4,9 5,2 6,4 6,3 5,5 5,8 5,0 4,9 4,7
    0,4 0,41 0,42 0,43 0,44 0,45 0,47 0,49 0,5 0,53
    ηред, % 0,84 0,83 0,82 0,81 0,82 0,83 0,84 0,85 0,86 0,87
    ηген % 0,88 0,89 0,9 0,87 0,86 0,85 0,9 0,87 0,88 0,89

    Задача 3. Определить мощность ветровой электростанции, содержащей n однотипных ветроэнергетических установок.

    Длина лопости ветроколеса L, скорость ветра w, КПД ветродвигателя ηв, электрический КПД установки (генератора и преобразователя) ηэ, температура воздуха t, атмосферное давление p.

    Ветровой поток, проходящий через площадь F, ометаемую лопастями ветродвигателя, имеет энергию

    , Дж,

    где w – скорость ветра, м/с,

    m – маcса воздуха.

    За секунду через площадь F протекает кг/с, где ρ=p/RT – плотность воздуха, кг/м3, р – атмосферное давление, Па, R = 287 Дж/кг∙К – газовая постоянная, Т – абсолютная температура, К. Площадь F определяется через длину лопасти Lветроколеса: F=πL2. Соответственно электрическая мощность N, развиваемая ВЭУ, определяется формулой

    , Вт,

    Где ηв – КПД ветродвигателя (изменяется в пределах 0,25…0,35),

    ηэ – электрический КПД ветрогенератора и преобразователя (в пределах 0,70…0,85).

    Величины и единицы их измерения Варианты заданий
    n, шт
    L, м
    w, м/с
    ηв, %
    ηэ, %
    t, 0С -20 -15 -10 -5
    р, кПа

    Читайте также

  • — Расчет ветрогенератора

    Задача 1 Рассчитать мощность ветроустановки с радиусом ротора R м при стартовой скорости ветра V м/с, коэффициентом использования ветра , КПД редуктора – &… [читать подробенее]

  • — РАСЧЕТ ВЕТРОГЕНЕРАТОРА

    Практическое занятие № 4 Цель: ознакомиться с основными параметрами ВЭУ и методикой расчета ветрогенераторов. Продолжительность занятия – 2 часа Ход работы: 1. На основании теоретической части работы ознакомится и законспектировать классификацию и особенности… [читать подробенее]

  • Источник: http://oplib.ru/energetika/view/1265610_raschet_vetrogeneratora

    Расчет идеального и реального ветряка

    Кинетическую энергию Экин (Дж) воздушного потока со сред­ней скоростью v (м/с), проходящего через поперечное сечение F (м2), перпендикулярное v, и массой воздуха т (кг) рассчитыва­ют по формуле

    Экин = mv2/2 (4.1)

    Величину т определяют по формуле

    m = pvF, (4.2)

    где р — плотность воздуха, кг/м:3.

    При расчетах в качестве р часто принимают ее значение, равное 1,226 кг/м3 соответствующее нормальным климатиче­ским условиям: t = 15 °С, р = 760 мм рт. ст., или 101,3 кПа. Если в (4.1) в качестве т принять секундную массу воздуха (кг/с), то получим значение мощности, развиваемой потоком воздуха (Дж/с или Вт), т. е.

    N = 0,5 p v3F. (4.3)

    Для F = 1 м2 получаем значение удельной мощности (Вт) ветрового потока Nуд (Вт/м2) со скоростью v (м/с):

    Nуд=0,5 p v 3. (4.4)

    Обратите внимание

    В ветроэнергетике обычно используют рабочий диапазон ско­ростей ветра, не превышающих 25 м/с. Эта скорость соответст­вует 9-балльному ветру (шторм) по 12-балльной шкале Бофорта.

    Ниже приведены значения NУД для указанного рабочего диапа­зона скоростей ветра:

    V, м/с 2 3 4 5 10 14 18 20 23 25

    Nуд, Вт/м2 4,9 16,55 39,2 76,6 613 1682 3575 4904 7458 9578

    Для ориентировочных расчетов в диапазоне скоростей ветра от vpmin до vpN полезную мощность ВЭУ NВЭУ (кВт) для заданной скорости ветра v (м/с) на высоте башни НБ (м) и диаметре ротора ВЭУ D1 (м) рассчитывают по формуле

    NВЭУ = NУД FВЭУ ηР ηГ ϛ10-3, (4.5)

    где NУД (Вт/м2) определяют по (4.4); FВЭУ (м2) — отметаемая пло­щадь ВЭУ с горизонтальной осью вращения, вычисляют по фор­муле

    FВЭУ = πD12/4 (4.6)

    ϛ — коэффициент мощности, обычно принимают равным 0,45 в практических расчетах, отн. ед.; ηР — КПД ротора (порядка 0,9), отн. ед.; ηГ— КПД генератора (порядка 0,95), отн. ед.

    После подстановки всех указанных значений в (4.5) получа­ем для ориентировочных расчетов:

    NВЭУ=1,85 D2v3 (4.7)

    Для малых ВЭУ vpmin находится обычно в пределах 2,5…4 м/с, a vpN — 8… 10 м/с. Для крупных ВЭУ указанные значения со­ставляют 4…5 м/с и 12… 15 м/с соответственно. Предельная до­пустимая скорость ветра по соображениям прочности ВЭУ равна 60 м/с.

    Турбины в составе ветровых электростанций (ВЭС) нужно располагать на расстоянии не менее пяти диаметров ротора одна от другой.

    Если ВЭУ располагают в ряд перпендикулярно направ­лению доминирующих ветров, то расстояние между ними может быть сокращено до четырех диаметров ротора.

    Важно

    Системы управле­ния современных ВЭС — микропроцессоры, осуществляющие мониторинг всех функций ВЭУ с возможностью дистанционного контроля.

    Разработанные отечественными специалистами конструкции ВЭУ являются абсолютно чистыми источниками энергии. Вра­щение ветротурбины у них значительно медленнее, чем у извест­ных ВЭУ, что является безопасным для обитания и перелетов

    Глава 4

    ИСПОЛЪЗОВАНИЕ ЭНЕРГИИ ВЕТРА

    птиц, а также не вызывает появления инфразвуковых волн, вред­ных для животных и человека. Основные гарантируемые техни­ко-экономические характеристики объекта:

    1) эффективность предлагаемых ВЭУ выше не менее чем на 30% лучших мировых образцов;

    2) простота изготовления, позволяющая выполнить ВЭУ на небольших заводах металлоконструкций.

    Стадия освоения объекта: наличие конструкторско-техничес-кой документации, изготовление и испытание моделей, строи­тельство опытно-промышленного образца.

    Источник: https://megalektsii.ru/s3078t8.html

    Ссылка на основную публикацию