Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры

Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры

При эксплуатации здания нежелателен как перегрев, так и промерзание. Определить золотую середину позволит теплотехнический расчет, который не менее важен, чем вычисление экономичности, прочности, стойкости к огню, долговечности.

Исходя из теплотехнических норм, климатических характеристик, паро – и влагопроницаемости осуществляется выбор материалов для сооружения ограждающих конструкций. Как выполнить этот расчет, рассмотрим в статье.

Цель теплотехнического расчета

От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и  перекрытиях.

Обратите внимание

Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.

Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.

По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха — 0,15 м/с

Теплотехнический расчет ставит перед собой цели определить:

  1. Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
  2. Настолько полно обеспечивается комфортный микроклимат внутри здания?
  3. Обеспечивается ли оптимальная тепловая защита конструкций?

Основной принцип — соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой. На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.

Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры. Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Формулы для производства расчета

Утечки тепла, теряемого домом, можно разделить на две основные части: потери через ограждающие конструкции и потери, вызванные функционированием вентиляционной системы. Кроме того, тепло теряется при сбросе теплой воды в канализационную систему.

Потери через ограждающие конструкции

Для материалов, из которых устроены ограждающие конструкции, нужно найти величину показателя теплопроводности Кт (Вт/м х градус). Они есть в соответствующих справочниках.

Теперь, зная толщину слоев, по формуле: R = S/Кт, высчитывают термическое сопротивление каждой единицы. Если конструкция многослойная, все полученные значения складывают.

Размеры тепловых потерь проще всего определить путем сложения тепловых течений через ограждающие конструкции, которые собственно и образуют это здание

Руководствуясь такой методикой, к учету принимают тот момент, что материалы, составляющие конструкции, имеют неодинаковую структуру. Также учитывается, что поток тепла, проходящий сквозь них, имеет разную специфику.

Для каждой отдельной конструкции теплопотери определяют по формуле:

Q = (A / R) х dT

Здесь:

  • А — площадь в м².
  • R — сопротивление конструкции теплопередаче.
  • dT — разность температур снаружи и изнутри. Определять ее нужно для самого холодного 5- дневного периода.

Выполняя расчет таким образом, можно получить результат только для самого холодного пятидневного периода. Общие теплопотери за весь холодный сезон определяют путем учета параметра dT, учитывая температуру не самую низкую, а среднюю.

В какой степени усваивается тепло, а также теплоотдача зависит от влажности климата в регионе. По этой причине при вычислениях применяют карты влажности

Далее, высчитывают количество энергии, необходимой для компенсации потерь тепла, ушедшего как через ограждающие конструкции, так и через вентиляцию. Оно обозначается символом W. Для этого есть формула:

W = ((Q + Qв) х 24 х N)/1000

В ней N — длительность отопительного периода в днях.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность.

Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас». Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Формула по площади имеет вид:

Q=S х 100 (150) Вт.

Здесь Q — комфортный уровень тепла в здании, S — площадь с отоплением в м². Числа 100 или 150 — удельная величина тепловой энергии, расходуемой для нагрева 1 м².

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.

Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв : 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв — теплопотери.
  2. V — объем комнаты в мᶾ.
  3. Р — плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв — кратность воздухообмена.
  5. С — удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать устройство вентиляции с рекуператором.

Рассмотрим несколько примеров для домов из разных материалов.

Пример теплотехнического расчета №1

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99.

Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 — tн = -22⁰С.

Важно

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ — tот = -2,3⁰. Температура снаружи в отопительный сезон — tht = -4,4⁰.

Теплопотери дома — важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его — 7 м, габариты в плане — 10 х 10 м. Материал вертикальных ограждающих конструкций — теплая керамика. Для нее коэффициент теплопроводности — 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее — 0,04 Вт/м х С. Количество оконных проемов в доме — 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5 : 0,16 = 3,125 кв. м х С/Вт. Во втором — R2 = 0,05 : 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5 : 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.

Если есть подвал, то теплопотери через фундамент и пол будут меньшими, поскольку в расчете участвует температура грунта, а не наружного воздуха

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Читайте также:  Как сделать пылесос своими руками: подробные инструкции по сборке самодельного прибора

Пример теплотехнического расчета №2

Требуется произвести расчет потерь сквозь стену из кирпича толщиной 51 см. Она утеплена 10-сантиметровым слоем минеральной ваты. Снаружи — 18⁰, внутри — 22⁰. Габариты стены — 2,7 м по высоте и 4 м по длине. Единственная наружная стена помещения ориентирована на юг, внешних дверей нет.

Для кирпича коэффициент теплопроводности Кт = 0,58 Вт/мºС, для минеральной ваты — 0,04 Вт/мºС. Термическое сопротивление:

Совет

R1 = 0,51 : 0,58 = 0,879 кв. м х С/Вт. R2 = 0,1 : 0,04 = 2,5 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 0.879 + 2,5 = 3.379 кв. м х С/Вт.

Площадь внешней стены А = 2,7 х 4 = 10,8 м²

Потери тепла через стену:

Qс = (10,8 : 3.379) х (22 – (-18)) = 127,9 Вт.

Для расчета потерь через окна применяют ту же формулу, но термическое сопротивление их, как правило, указано в паспорте и рассчитывать его не нужно.

В теплоизоляции дома окна — «слабое звено». Через них уходит довольно большая доля тепла. Уменьшат потери многослойные стеклопакеты, теплоотражающие пленки, двойные рамы, но даже это не поможет избежать теплопотерь полностью

Если в доме окна с размерами 1,5 х 1,5 м ² энергосберегающие, ориентированы на Север, а термическое сопротивление равно 0,87 м2°С/Вт, то потери составят:

Qо = (2,25 : 0,87) х (22 – (-18)) = 103,4 т.

Пример теплотехнического расчета №3

Выполним тепловой расчет деревянного бревенчатого здания с фасадом, возведенным из сосновых бревен слоем толщиной 0,22 м. Коэффициент для этого материала — К=0,15. В этой ситуации теплопотери составят:

R = 0,22 : 0,15 = 1,47 м² х ⁰С/Вт.

Самая низкая температура пятидневки — -18⁰, для комфорта в доме задана температура 21⁰. Разница составит 39⁰. Если исходить из площади 120 м², получится результат:

Qс = 120 х 39 : 1,47 = 3184 Вт.

Для сравнения определим потери кирпичного дома. Коэффициент для силикатного кирпича — 0,72.

R = 0,22 : 0,72 = 0,306 м² х ⁰С/Вт.
Qс = 120 х 39 : 0,306 = 15 294 Вт.

В одинаковых условиях деревянный дом более экономичный. Силикатный кирпич для возведения стен здесь не подходит вовсе.

Деревянное строение имеет высокую теплоемкость. Его ограждающие конструкции долго хранят комфортную температуру. Все же, даже бревенчатый дом нужно утеплять и лучше сделать это и изнутри, и снаружи

Профессионалы рекомендуют обязательно делать теплорасчет как на стадии строительства, так и при замене отопления.

Пример теплорасчета №4

Обратите внимание

Дом будет построен в Московской области. Для расчета взята стена, созданная из пеноблоков. Как утеплитель применен пенополистирол. Отделка конструкции — штукатурка с двух сторон. Структура ее — известково-песчаная.

Пенополистирол имеет плотность 24 кг/мᶾ.

Относительные показатели влажности воздуха в комнате — 55% при усредненной температуре 20⁰. Толщина слоев:

  • штукатурка — 0,01 м;
  • пенобетон — 0,2 м;
  • пенополистирол — 0,065 м.

Задача — отыскать нужное сопротивление теплопередаче и фактическое. Необходимое Rтр определяют, подставив значения в выражение:

Rтр=a х ГСОП+b

где ГОСП — это градусо-сутки сезона отопления, а и b — коэффициенты, взятые из таблицы №3 Свода Правил 50.13330.2012. Поскольку здание жилое, a равно 0,00035, b = 1,4.

ГСОП высчитывают по формуле, взятой из того же СП:

ГОСП = (tв – tот) х zот.

В этой формуле tв = 20⁰, tот = -2,2⁰, zот — 205 — отопительный период в сутках. Следовательно:

ГСОП = ( 20 – (-2,2)) х 205 = 4551⁰ С х сут.;

Rтр = 0,00035 х 4551 + 1,4 = 2,99 м2 х С/Вт.

Используя таблицу №2 СП50.13330.2012, определяют коэффициенты теплопроводности для каждого пласта стены:

  • λб1 = 0,81 Вт/м ⁰С;
  • λб2 = 0,26 Вт/м ⁰С;
  • λб3 = 0,041 Вт/м ⁰С;
  • λб4 = 0,81 Вт/м ⁰С.

Полное условное сопротивление теплопередаче Rо, равно сумме сопротивлений всех слоев. Рассчитывают его по формуле:

Эта формула взята из СП 50.13330.2012. Здесь 1/ав – это противодействие тепловосприятию внутренних поверхностей. 1/ан — то же наружных, δ / λ — сопротивление термическое слоя

Подставив значения получают: Rо усл. = 2,54 м2°С/Вт. Rф определяют путем умножения Rо на коэффициент r, равный 0.9:

Rф = 2,54 х 0,9 = 2,3 м2 х °С/Вт.

Результат обязывает изменить конструкцию ограждающего элемента, поскольку фактическое тепловое сопротивление меньше расчетного.

Существует множество компьютерных сервисов, ускоряющих и упрощающих расчеты.

Выводы и полезное видео по теме

Выполнение теплотехнического расчета при помощи онлайн-калькулятора:

Правильный теплотехнический расчет:

Грамотный теплотехнический расчет позволит оценить результативность утепления наружных элементов дома, определить мощность необходимого отопительного оборудования.

Как результат, можно сэкономить при покупке материалов и нагревательных приборов. Лучше заранее знать, справиться ли техника с нагревом и кондиционированием строения, чем покупать все наугад.

Источник: https://tvoystroyka.ru/otoplenie/teplotehnicheskii-raschet-zdaniia-specifika-i-formyly-vypolneniia-vychislenii-prakticheskie-primery/

Теплотехнический расчет ограждающих конструкций зданий :

Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.

Ограждающие конструктивные элементы отапливаемых общественных и жилых зданий, за исключением требований устойчивости и прочности, долговечности и огнестойкости, экономичности и архитектурного оформления, должны отвечать в первую очередь теплотехническим нормам.

Выбирают ограждающие элементы в зависимости от конструктивного решения, климатологических характеристик района застройки, физических свойств, влажно-температурного режима в здании, а также в соответствии с требованиями сопротивления теплопередаче, воздухонипроницанию и паропроницанию.

В чем смысл расчета?

  1. Если во время расчета стоимости будущего строения учитывать лишь прочностные характеристики, то, естественно, стоимость будет меньше. Однако это видимая экономия: впоследствии на обогрев помещения уйдет значительно больше средств.
  2. Грамотно подобранные материалы создадут в помещении оптимальный микроклимат.
  3. При планировке системы отопления также необходим теплотехнический расчет.

    Чтобы система была рентабельной и эффективной, необходимо иметь понятие о реальных возможностях здания.

Теплотехнические требования

Важно, чтобы наружные конструкции соответствовали следующим теплотехническим требованиям:

  • Имели достаточные теплозащитные свойства. Другими словами, нельзя допускать в летнее время перегрева помещений, а зимой – излишних потерь тепла.
  • Разность температур воздуха внутренних элементов ограждений и помещений не должна быть выше нормативного значения. В противном случае может произойти чрезмерное охлаждение тела человека излучением тепла на данные поверхности и конденсация влаги внутреннего воздушного потока на ограждающих конструкциях.
  • В случае изменения теплового потока температурные колебания внутри помещения должны быть минимальные. Данное свойство называется теплоустойчивостью.
  • Важно, чтобы воздухонепроницаемость ограждений не вызывала сильного охлаждения помещений и не ухудшала теплозащитные свойства конструкций.
  • Ограждения должны иметь нормальный влажностный режим. Так как переувлажнение ограждений увеличивает потери тепла, вызывает в помещении сырость, уменьшает долговечность конструкций.

Чтобы конструкции соответствовали вышеперечисленным требованиям, выполняют теплотехнический расчет, а также рассчитывают теплоустойчивость, паропроницаемость, воздухопроницаемость и влагопередачу по требованиям нормативной документации.

Теплотехнические качества

От теплотехнических характеристик наружных конструктивных элементов строений зависит:

  • Влажностный режим элементов конструкции.
  • Температура внутренних конструкций, которая обеспечивает отсутствие на них конденсата.
  • Постоянная влажность и температура в помещениях, как в холодное, так и в теплое время года.
  • Количество тепла, которое теряется зданием в зимний период времени.

Итак, исходя из всего перечисленного выше, теплотехнический расчет конструкций считается немаловажным этапом в процессе проектирования зданий и сооружений, как гражданских, так и промышленных. Проектирование начинается с выбора конструкций – их толщины и последовательности слоев.

Задачи теплотехнического расчета

Итак, теплотехнический расчет ограждающих конструктивных элементов осуществляется с целью:

  1. Соответствия конструкций современным требованиям по тепловой защите зданий и сооружений.
  2. Обеспечения во внутренних помещениях комфортного микроклимата.
  3. Обеспечения оптимальной тепловой защиты ограждений.

Основные параметры для расчета

Чтобы определить расход тепла на отопление, а также произвести теплотехнический расчет здания, необходимо учесть множество параметров, зависящих от следующих характеристик:

  • Назначение и тип здания.
  • Географическое расположение строения.
  • Ориентация стен по сторонам света.
  • Размеры конструкций (объем, площадь, этажность).
  • Тип и размеры окон и дверей.
  • Характеристики отопительной системы.
  • Количество людей, находящихся в здании одновременно.
  • Материал стен, пола и перекрытия последнего этажа.
  • Наличие системы горячего водоснабжения.
  • Тип вентиляционных систем.
  • Другие конструктивные особенности строения.

Теплотехнический расчет: программа

На сегодняшний день разработано множество программ, позволяющих произвести данный расчет. Как правило, расчет осуществляется на основании методики, изложенной в нормативно-технической документации.

Данные программы позволяют вычислить следующее:

  • Термическое сопротивление.
  • Потери тепла через конструкции (потолок, пол, дверные и оконные проемы, а также стены).
  • Количество тепла, требуемого для нагрева инфильтрирующего воздуха.
  • Подбор секционных (биметаллических, чугунных, алюминиевых) радиаторов.
  • Подбор панельных стальных радиаторов.

Теплотехнический расчет: пример расчета для наружных стен

Для расчета необходимо определить следующие основные параметры:

  • tв = 20°C – это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.
  • По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
  • В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений – A.
  • tн = -34 °C – это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
  • Zот.пер = 220 суток – это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
  • Tот.пер. = -5,9 °C – это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.

Исходные данные

В таком случае теплотехнический расчет стены будет производиться с целью определения оптимальной толщины панелей и теплоизоляционного материала для них. В качестве наружных стен будут использоваться сэндвич-панели (ТУ 5284-001-48263176-2003).

Комфортные условия

Рассмотрим, как выполняется теплотехнический расчет наружной стены. Для начала следует вычислить требуемое сопротивление теплопередачи, ориентируясь на комфортные и санитарно-гигиенические условия:

R0тр = (n × (tв – tн)) : (Δtн × αв), где

n = 1 – это коэффициент, который зависит от положения наружных конструктивных элементов по отношению к наружному воздуху. Его следует принимать по данным СНиПа 23-02-2003 из таблицы 6.

Δtн = 4,5 °C – это нормируемый перепад температуры внутренней поверхности конструкции и внутреннего воздуха. Принимается по данным СНиПа из таблицы 5.

Важно

αв = 8,7 Вт/м2 °C – это теплопередача внутренних ограждающих конструкций. Данные берутся из таблицы 5, по СНиПу.

Подставляем данные в формулу и получаем:

R0тр = (1 × (20 – (-34)) : (4,5 × 8,7) = 1,379 м2 °C/Вт.

Условия энергосбережения

Выполняя теплотехнический расчет стены, исходя из условий энергосбережения, необходимо вычислить требуемое сопротивление теплопередачи конструкций. Оно определяется по ГСОП (градусо-сутки отопительного периода, °C) по следующей формуле:

ГСОП = (tв – tот.пер.) × Zот.пер, где

tв – это температура воздушного потока внутри здания, °C.

Zот.пер. и tот.пер. – это продолжительность (сут.) и температура (°C) периода, имеющего среднесуточную температуру воздуха ≤ 8 °C.

Таким образом:

ГСОП = (20 – (-5,9)) ×220 = 5698.

Исходя из условий энергосбережения, определяем R0тр методом интерполяции по СНиПу из таблицы 4:

R0тр = 2,4 + (3,0 – 2,4)×(5698 – 4000)) / (6000 – 4000)) = 2,909 (м2°C/Вт)

Далее, выполняя теплотехнический расчет наружной стены, следует вычислить сопротивление теплопередаче R0:

R0 = 1/ αв + R1 + 1/ αн, где

R1= d/l.

d – это толщина теплоизоляции, м.

l = 0,042 Вт/м°C – это теплопроводность минераловатной плиты.

αн = 23 Вт/м2°C – это теплоотдача наружных конструктивных элементов, принимаемый по СНиПу.

R0 = 1/8,7 + d/0,042+1/23 = 0,158 + d/0,042.

Толщина утеплителя

Толщина теплоизоляционного материала определяется исходя из того, что R0 = R0тр, при этом R0тр берется при условиях энергосбережения, таким образом:

2,909 = 0,158 + d/0,042, откуда d = 0,116 м.

Подбираем марку сэндвич-панелей по каталогу с оптимальной толщиной теплоизоляционного материала: ДП 120, при этом общая толщина панели должна составлять 120 мм. Аналогичным образом производится теплотехнический расчет здания в целом.

Необходимость выполнения расчета

Запроектированные на основании теплотехнического расчета, выполненного грамотно, ограждающие конструкции позволяют сократить затраты на отопление, стоимость которого регулярно увеличиваются.

К тому же сбережение тепла считается немаловажной экологической задачей, ведь это напрямую связано с уменьшением потребления топлива, что приводит к снижению воздействия негативных факторов на окружающую среду.

Кроме того, стоит помнить о том, что неправильно выполненная теплоизоляция способна привести к переувлажнению конструкций, что в результате приведет к образованию плесени на поверхности стен.

Совет

Образование плесени, в свою очередь, приведет к порче внутренней отделки (отслаивание обоев и краски, разрушение штукатурного слоя).

В особо запущенных случаях может понадобиться радикальное вмешательство.

Очень часто строительные компании в своей деятельности стремятся использовать современные технологии и материалы.

Только специалисту под силу разобраться в необходимости применения того или иного материала, как отдельно, так и в совокупности с другими.

Именно теплотехнический расчет поможет определиться с наиболее оптимальными решениями, которые обеспечат долговечность конструктивных элементов и минимальные финансовые затраты.

Источник: https://syl.ru/article/189529/new_teplotehnicheskiy-raschet-ograjdayuschih-konstruktsiy-zdaniy

Теплотехнический расчет. Пример расчета стены. Обзор программы «Теремок» и онлайн калькулятора

В современных условиях человек все чаще задумывается о рациональном использовании ресурсов. Электричество, вода, материалы. К экономии всего этого в мире пришли уже достаточно давно и всем понятно как это сделать. Но основную сумму в счетах на оплату составляет отопление, и не каждому понятно, как снизить расход по этому пункту.

Что такое теплотехнический расчет?

Теплотехнический расчет выполняют для того, чтобы подобрать толщину и материал ограждающих конструкций и привести здание в соответствие нормам тепловой защиты. Основным нормативным документом, регламентирующим способность конструкции сопротивляться теплопередаче, является СНиП 23-02-2003 «Тепловая защита зданий».

Основным показателем ограждающей поверхности с точки зрения теплозащиты стало приведенное сопротивление теплопередаче. Это величина, учитывающая теплозащитные характеристики всех слоев конструкции, учитывая мостики холода.

Подробный и грамотный теплотехнический расчет — достаточно трудоемок. При возведении частных домов, собственники стараются учесть прочностные характеристики материалов, часто забывая о сохранении тепла. Это может привести к довольно плачевным последствиям.

Зачем выполняется расчет?

Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.

Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.

Что получает владелец при правильном выполнении расчетов:

  • Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
  • Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
  • Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
  • Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.

Нормативные документы для выполнения расчета

Приведенное сопротивление и его соответствие нормируемому значению – главная цель расчета. Но для его выполнения потребуется узнать теплопроводности материалов стены, кровли или перекрытия. Теплопроводность – величина, характеризующая способность изделия проводить через себя тепло. Чем она ниже, тем лучше.

Во время проведения расчета теплотехники опираются на следующие документы:

  • СП 50.13330.2012 «Тепловая защита зданий». Документ переиздан на основе СНиП 23-02-2003. Основной норматив для расчета [1];
  • СП 131.13330.2012 «Строительная климатология». Новое издание СНиП 23-01-99*. Данный документ позволяет определить климатические условия населенного пункта, в котором расположен объект [2];

Источник: http://postroy-sam.com/teplotexnicheskij-raschet.html

Теплотехнический расчет. Учебное пособие по теплотехническому расчету ограждающих конструкций зданий и сооружений для самостоятельной работы

Режим Влажность внутреннего воздуха, %,при температуре (°С)
до 12 св.12 до 24 св.24
Сухой до 60 до 50 до 40
Нормальный св. 60 до 75 св. 50 до 60 св. 40 до 50
Влажный св. 75 св. 60 до 75 св. 50 до 60
Мокрый св. 75 св.60

Зону влажности районов строительства на территории России необходимо принимать по приложению 2.

Библиографический список

1. СНиП 23-01–99. Строительная климатология.2. СНиП 23-02–2003. Тепловая защита зданий.3. СП 23-101–2004. Свод правил по проектированию и строительству. Проектирование тепловой защиты зданий.4. СНиП 31-01–2003. Здания жилые многоквартирные.5. СНиП 31-03–2001. Производственные здания.6. СНиП 2-08.02–89 . Общественные здания и сооружения.7. ГОСТ 26602, 1-99. Блоки оконные и дверные. Метод определения сопротивления теплопередаче.8. ГОСТ 31168–2003. Здания жилые. Метод определения удельного потребления тепловой энергии на отопление.9. Шептуха, Т.С. Теплотехнический расчет ограждающих конструкций : метод. указания / Т.С. Шептуха; Перм. гос. техн. ун-т. – Пермь, 2001. 22 с.

9. ПРИМЕРЫ РАСЧЕТА ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ

Пример 1
Теплотехнический расчет наружной кирпичной стены

слоистой конструкции

(определение толщины утеплителя и выполнения санитарно-гигиенических требований тепловой защиты здания)

А. Исходные данныеМесто строительства – г. Пермь.Зона влажности – нормальная [3].

Продолжительность отопительного периода zht = 229 суток [1].

Средняя расчетная температура отопительного периода tht = –5,9 ºС [1].

Температура холодной пятидневки text = –35 ºС [1].

Расчет произведен для пятиэтажного жилого дома:

температура внутреннего воздуха tint = + 21ºС [2];

влажность воздуха:= 55 %;

влажностный режим помещения – нормальный.Условия эксплуатации ограждающих конструкций – Б (приложение 2 [2].

Коэффициент теплоотдачи внутренней поверхности ограждения аint = 8,7 Вт/м2 С [2].

Коэффициент теплоотдачи наружной поверхности ограждения aext = 23 Вт/м2·°С [2].

Рис.3 Расчётная схема Необходимые данные о конструктивных слоях стены для теплотехнического расчёта сведены в таблицу.

№п/п Наименование материала , кг/м3 δ, м ,Вт/(м·°С) R, м2·°С/Вт
1 Известково-песчаный раствор 1600 0,015 0,81 0,019
2 Кирпичная кладка из пустотного кирпича 1200 0,380 0,52 0,731
3 Плиты пенополистирольные 100 Х 0,052 Х
4 Кирпичная кладка из пустотного кирпича (облицовочного) 1600 0,120 0,58 0,207

Б. Порядок расчета

Определение градусо-суток отопительного периода по формуле (2) СНиП 23-02–2003 [2]:

Dd = (tint – tht)·zht = (21–(–5,9))·229 = 6160,1.

Нормируемое значение сопротивления теплопередаче наружных стен по формуле (1) СНиП 23-02–2003 [2]:

Rreq = aDd + b =0,00035·6160,1 + 1,4 =3,56 м2·°С/Вт.

Приведенное сопротивление теплопередаче R0r наружных кирпичных стен с эффективным утеплителем жилых зданий рассчитывается по формуле

R0r = R0усл r,

где R0усл – сопротивление теплопередаче кирпичных стен, условно определяемое по формулам (9) и (11) без учета теплопроводных включений, м2·°С/Вт;

R0r — приведенное сопротивление теплопередаче с учетом коэффициента теплотехнической однородности r, который для стен толщиной 510 мм равен 0,74.

Расчёт ведётся из условия равенства

R0r =Rreq

следовательно,

R0усл= 3,56/0,74 = 4,81 м2·°С /Вт

R0усл =Rsi +Rk +Rse,

отсюда

= 4,81- (1/8,7 + 1/23) = 4,652 м2·°С /Вт
Термическое сопротивление наружной кирпичной стены слоистой конструкции может быть представлено как сумма термических сопротивлений отдельных слоев, т.е.

,

Определяем термическое сопротивление утеплителя:

= 4,652 – ( 0,019 + 0,731 + 0,207 ) = 3,695 м2·С/Вт.

Находим толщину утеплителя:

Rут = 0,052·3,695 = 0,192 м.

Принимаем толщину утеплителя 200 мм.Окончательная толщина стены будет равна (380+200+120) = 700 мм.Производим проверку с учетом принятой толщины утеплителя:

R0r =0,74 ( 1/8,7 + 0,019 + 0,731 + 0,2/0,052 + 0,207 + 1/23 ) = 3,67 м2·°С/Вт.

Условие R0r = 3,67 >= 3,56 м2·°С/Вт выполняется.
В. Проверка выполнения санитарно-гигиенических требований

тепловой защиты здания

Проверяем выполнение условия:
t = (tint – text)/ R0r aint = (21+35)/3,67·8,7 = 1,75 ºС.
Согласно табл. 5 СНиП 23-02–2003 ∆tn = 4 °С, следовательно, условие ∆t = 1,75 tn = 4 ºС выполняется.

Проверяем выполнение условия:

] = 21 – [1(21+35) / 3,67·8,7] = = 21 – 1,75 = 19,25ºС.

Согласно приложению (Р) Сп 23-101–2004 для температуры внутреннего воздуха tint = 21 ºС и относительной влажности= 55 % температура точки росы td = 11,62 ºС, следовательно, условие= выполняется.

Вывод. Ограждающая конструкция удовлетворяет нормативным требованиям тепловой защиты здания.

Пример 2

Теплотехнический расчет чердачного перекрытия

(определение толщины утеплителя и выполнения санитарно-гигиенических требований тепловой защиты здания)

А. Исходные данныеМесто строительства – г. Пермь.Климатический район – I B [1].Зона влажности – нормальная [1].

Продолжительность отопительного периода zht = 229 сут [1].

Средняя расчетная температура отопительного периода tht = –5,9 ºС [1].

Температура холодной пятидневки text = –35 ºС [1].

Расчет произведен для пятиэтажного жилого дома:

температура внутреннего воздуха tint = + 21ºС [2];

влажность воздуха= 55 %;

влажностный режим помещения – нормальный.Условия эксплуатации ограждающих конструкций – Б.

Коэффициент теплоотдачи внутренней поверхности ограждения аint = 8,7 Вт/м2·С [2].

Коэффициент теплоотдачи наружной поверхности ограждения аext = 12 Вт/м2·°С [2].

Рис. 4 Расчётная схема Чердачное перекрытие состоит из конструктивных слоев, приведенных в таблице.

№п/п Наименование материала(конструкции) , кг/м3 δ, м ,Вт/(м·°С) R, м2·°С/Вт
1 Железобетонные пустотные плиты ПК (ГОСТ 9561 – 91) 0,22 0,142
2 Пароизоляция – 1 слой рубитекса (ГОСТ 30547-97) 600 0,005 0,17 0,0294
3 Плиты полужёсткие минераловатные на битумных связующих (ГОСТ 4640-93) 100 Х 0,065 Х

Б. Порядок расчета

Определение градусо-суток отопительного периода по формуле (2) СНиП 23-02–2003 [2]:

Dd = (tint – tht)·zht = (21 + 5,9)·229 = 6160,1 ºС·сут.

Нормируемое значение сопротивления теплопередаче чердачного перекрытия по формуле (1) СНиП 23-02–2003 [2]:

Rreq = aDd + b = 0,00045·6160,1 + 1,9 = 4,67 м2·С/Вт.

Теплотехнический расчет ведется из условия равенства общего термического сопротивления R0 нормируемому Rreq, т.е.
R0 = Rreq.

По формуле (7) СП 23-100–2004 определяем термическое сопротивление ограждающей конструкции Rк

= 4,67 – (1/8,7 + 1/12) = 4,67 – 0,197 = 4,473 м2·°С/Вт.

Термическое сопротивление ограждающей конструкции (чердачного перекрытия) может быть представлено как сумма термических сопротивлений отдельных слоев, т.е.

,

где Rж.б – термическое сопротивление железобетонной плиты перекрытия, величина которого согласно [9] составляет 0,142 м2·°С/Вт для условий эксплуатации «Б» и 0,147 м2·°С/Вт — условий эксплуатации «А».

Rп.и – термическое сопротивление слоя пароизоляции;

Rут – термическое сопротивление утепляющего слоя.

=
= 4,473 – (0,142 + 0,005/0,17) = 4,302 м2·°С/Вт.Используя формулу (6) СП 23-101–2004, определяем толщину утепляющего слоя

= 4,302·0,065 = 0,280 м.

Обратите внимание

Принимаем толщину утепляющего слоя равной 300 мм, тогда фактическое сопротивление теплопередаче составит

= 1/8,7 + (0,142 + 0,005/0,17 + 0,300/0,065) + 1/12 = 4,98 м2·°С/Вт.

Условие= 4,98 м2·°С/Вт >Rreq = 4,67 м2·°С/Вт выполняется.

В. Проверка выполнения санитарно-гигиенических требований

тепловой защиты здания

Проверяем выполнение условия:
t = (tint – text)/aint = (21+35)/4,98·8,7 = 1,29 °С.
Согласно табл. 5 СНиП 23-02–2003 ∆tn = 3 °С, следовательно, условие ∆t =1,29 °С tn = 3 °С выполняется.

Проверяем выполнение условия:

= 21 – [1(21+35) / 4,98·8,7] == 21 – 1,29 = 19,71 °С.

Согласно приложению (Р) СП 23-101–2004 для температуры внутреннего воздуха tint = 21 °С и относительной влажности= 55 % температура точки росы td = 11,62 °С, следовательно, условиевыполняется.

Вывод. Чердачное перекрытие удовлетворяет нормативным требованиям тепловой защиты здания.

Пример 3

Теплотехнический расчет стеновой панели производственного здания

(определение толщины теплоизоляционного слоя в трехслойной

железобетонной панели на гибких связях)

А. Исходные данныеМесто строительства – г. Пермь.Климатический район – I B [1].Зона влажности – нормальная [1].

Продолжительность отопительного периода zht = 229 сут [1].

Средняя расчетная температура отопительного периода tht = –5,9 ºС [1].

Температура холодной пятидневки text = –35 °С [1].

Температура внутреннего воздуха tint = +18 °С [2].

Влажность воздуха= 50 %.

Влажностный режим помещения – нормальный.Условия эксплуатации ограждающих конструкций – Б.

Коэффициент теплоотдачи внутренней поверхности ограждения аint= 8,7 Вт/м2 ·С [2].

Коэффициент теплоотдачи наружной поверхности ограждения αext = 23 Вт/м2·°С [2].

Рис.5 Расчётная схема Необходимые данные для теплотехнического расчета стеновой панели сведены в таблицу.

№ п/п Наименование материала , кг/м3 , мм , Вт/(м·°С) R, м2·°С/Вт
1 Железобетон 2500 0,1 2,04 0,049
2 Пенополистирол 40 Х 0,05 Х
3 Железобетон 2500 0,05 2,04 0,025

1   2   3   4   5   6     8   9   10   …   13

Источник: http://topuch.ru/uchebnoe-posobie-po-teplotehnicheskomu-raschetu-ograjdayushih/index7.html

Теплотехнический расчет покрытия



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса — ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший «Салат из свеклы с чесноком»

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Глава 2: Теплотехнический расчет

Общая часть

Район строительства: г. Якутск

Зона влажности (приложение В): сухая

Влажностный режим помещений зданий (табл. 1): сухой

Условия эксплуатации ограждающих конструкций (табл. 2): А

Базовое значение требуемого сопротивления теплопередаче Roтр определяется исходя из нормативных требований к приведенному сопротивлению теплопередаче (п. 5.2) СП 50.13330.2012 согласно формуле:

Roтр=a·ГСОП+b

Важно

где а и b— коэффициенты, значения которых следует приниматься по данным (таблицы 3) СП 50.13330.2012 для соответствующих групп зданий.

Так для типа здания — общественные, кроме жилых, лечебно-профилактических и детских учреждений, школ, интернатов а и b равны:

а=0.00035 для перекрытий над подпольями;

а=0.0004 для покрытий и перекрытий над проездами;

а=0.0003 для стен;

b=1.3 для перекрытий над подпольями;

b=1.6 для покрытий и перекрытий над проездами;

b=1.3 для стен.

Градусо-сутки отопительного периода ГСОП, 0С·сут определяется по (формуле 5.2) СП 50.13330.2012

ГСОП=(tв-tот)zот

где -расчетная средняя температура внутреннего воздуха здания,°C

tв=20°C

tот-средняя температура наружного воздуха,°C принимаемые по (таблице 1) СП131.13330.2012 для периода со средней суточной температурой наружного воздуха не более 8 °С для типа здания — общественные, кроме жилых, лечебно-профилактических и детских учреждений, школ, интернатов

tов=-20.9 °С

zот-продолжительность, сут, отопительного периода принимаемые по таблице 1 СП131.13330.2012 для периода со средней суточной температурой наружного воздуха не более 8 °С для типа здания — общественные, кроме жилых, лечебно-профилактических и детских учреждений, школ, интернатов

zот=252 сут.

Сопротивление теплопередаче R0усл, (м2°С/Вт) определим по (формуле E.6) СП 50.13330.2012:

R0усл=1/αint+Rk+1/αext

где αint — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2°С), принимаемый по (таблице 4) СП 50.13330.2012

αint=8.7 Вт/(м2°С

αext — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, принимаемый по (таблице 6) СП 50.13330.2012

αext=17 – согласно п.3 таблицы 6 СП 50.13330.2012 для перекрытий над холодными (с ограждающими стенками) подпольями.

αext=23 – согласно п.3 таблицы 6 СП 50.13330.2012 для наружных стен, покрытий и перекрытий над проездами

Совет

Термическое сопротивление Rk многослойной ограждающей конструкции следует рассчитывать, как сумму сопротивлений воздухопроницанию отдельных слоев по формуле

Rk=R1+R2+…+Rn

где R1, R2, …, Rn – термические сопротивления отдельных слоев ограждающей конструкции, м°С /Вт, определяется по формуле

Rn=δn/λn

где δn – толщина слоя, м;

λn – расчетный коэффициент теплопроводности материала слоя, Вт/м°С.

Теплотехнический расчет цокольного перекрытия

1)Керамическая плитка δ=10 мм,

λ=1,5 Вт/(м·°С);

2) Цементно-песчаная стяжка армированная сеткой δ=50 мм, λ=1,2 Вт/(м·°С);

3) Пенополистирол (ГОСТ 15588-86) ПСБ-С-50 δ=х, λ=0,037 Вт/(м·°С);

4) Железобетонная плита δ=200 мм, λ=1,92 Вт/(м·°С);

Определим градусо-сутки отопительного периода ГСОП

ГСОП=(20-(-20.9))252=10306.8 °С·сут

Определяем требуемое сопротивление теплопередачи Roтр (м2·°С/Вт).

Roнорм=0.00035·10306.8+1.3 =4.29м2°С/Вт

Находим термическое сопротивление Rk многослойной ограждающей конструкции

Rk=Rжб +Rутепл+Rц.п.с+Rк.пл=

0,2/1,92+х/0,04+0,05/1,2+0,01/1,5=0,151+х/0,04

Сопротивление теплопередаче R0усл

R0усл=1/αint+Rk+1/αext=1/8,7+0,151+х/0,04+1/17=0,323+х/0,037

Из условия Roнорм R0усл находим толщину утеплителя

Roнорм=4,29 ≤ R0усл=0,323+х/0,037

4,29=0,323+х/0,04

Х=0,179м=179мм

Принимаем δутепл=200мм

Проверяем, выполняется ли условие Roнорм R0усл

Rk=Rжб +Rутепл+Rц.п.с+Rк.пл=

0,2/1,92+0,2/0,04+0,05/1,2+0,01/1,5=5,323 м2·°С/Вт

R0усл=1/αint+Rk+1/αext=1/8,7+5,323+1/17=5,495 м2·°С/Вт

Roнорм=4,29 м2·°С/Вт R0усл=5,495 м2·°С/Вт

Вывод: величина приведённого сопротивления теплопередаче R0усл больше требуемого Roнорм (5,495>4,29) следовательно представленная ограждающая конструкция соответствует требованиям по теплопередаче.

Теплотехнический расчет покрытия

1) Цементно-песчаная стяжка δ=40 мм, λ=1,2 Вт/(м·°С);

2) Уклонообразующий слой из керамзита δ=40 мм, λ=0,2 Вт/(м·°С);

3) Пенополистирол (ГОСТ 15588-86)

ПСБ-С-35 δ=х, λ=0,037 Вт/(м·°С);

4) Железобетонная плита δ=200 мм,

λ=1,92 Вт/(м·°С);

Определим градусо-сутки отопительного периода ГСОП

ГСОП=(20-(-20.9))252=10306.8 °С·сут

Определяем требуемое сопротивление теплопередачи Roтр (м2·°С/Вт).

Roнорм=0.0004·10306.8+1.6 =5,723 м2°С/Вт

Находим термическое сопротивление Rk многослойной ограждающей конструкции

Rk=Rжб +Rутепл+ Rкерамзит+Rц.п.с=

0,2/1,92+х/0,037+0,04/0,2+0,04/1,2=0,337+х/0,037

Сопротивление теплопередаче R0усл

R0усл=1/αint+Rk+1/αext=1/8,7+0,337+х/0,037+1/23=0,495+х/0,037

Из условия Roнорм R0усл находим толщину утеплителя

Roнорм=5,723 ≤ R0усл=0,495+х/0,037

5,723=0,495+х/0,037

Х=0,193м=193мм

Принимаем δутепл=200мм

Проверяем, выполняется ли условие Roнорм R0усл

Rk=Rжб +Rутепл+ Rкерамзит +Rц.п.с=

0,2/1,92+0,2/0,037+0,04/0,2+0,04/1,2=5,742 м2·°С/Вт

R0усл=1/αint+Rk+1/αext=1/8,7+5,742+1/23=5,9 м2·°С/Вт

Roнорм=5,723 м2·°С/Вт R0усл=5,758 м2·°С/Вт

Вывод: величина приведённого сопротивления теплопередаче R0усл больше требуемого Roнорм (5.9>5,723) следовательно представленная ограждающая конструкция соответствует требованиям по теплопередаче.

Источник: https://megapredmet.ru/1-75008.html

Ссылка на основную публикацию